

УДК 621.793.8 THE CONTRIBUTION TO THE SCATTERING OF ELECTRONS IN THE **RESISTIVITY AND TCR** ВНЕСОК РОЗСІЮВАННЯ ЕЛЕКТРОНІВ У ПИТОМИЙ ОПІР І ТКО

Buryk I. Р. / Бурик І.П.

c.ph.-m.s., as. prof./ к.ф.-м.н., доц. Konotop Institute of Sumy State University, Konotop, Myru Ave., 24, 41615 Конотопський Інститут СумДУ, м. Конотоп, пр. Миру, 24, 41615 Hrychanovska Т.М. / Гричановська Т.М. с.ph.-m.s. / к.ф.-м.н., ст.вик. Konotop Institute of Sumy State University, Konotop, Myru Ave., 24, 41615 Конотопський Інститут СумДУ, м. Конотоп, пр. Миру, 24, 41615 Hrychanovska O.A. / Гричановська О.А.

Specialist / фахівець.

AVTOR LLC., 31-33, str. Simi Brodskykh, Kyiv, 03057, Ukraine АВТОР ТОВ, м. Київ, вул. сім'ї Бродських, 31/33, 035037

Анотація. В роботі, на основі експериментальних даних, розраховано внесок зерномежового і поверхневого розсіювання електронів у питомий опір і температурний коефіцієнт опору одношарових полікристалічних плівок Pd, Pt, Fe і Co в інтервалі товщин 10-100 нм. Підтверджено розмірну залежність відносного внеску зерномежового розсіювання електронів від товщини зразка і від середнього розміру кристаліті.

Ключові слова: зерномежове розсіювання, розмірні ефекти, полікристалічні металеві плівки, питомий опір, ТКО.

Вступ. У розвитку електроніки за останні десятиліття помітні значні успіхи в процесах мінімізації елементів до субмікронних, підвищення ступеня інтеграції, використання нових явищ і ефектів [1, 2]. Це стало можливим, як завдяки удосконаленню технологічних процесів, так і внаслідок використання тонкоплівових матеріалів різноманітної природи з широким спектром електрофізичних характеристик. Найчастіше, основою будови елементів сучасної наноелектроніки і спінтроніки, чутливих елементів сенсорної техніки виступають багатокомпонентні чи гетерогенні плівкові системи, в яких реалізуються унікальні ефекти не притаманні масивним зразкам [2].

Системне вивчення електрофізичних властивостей плівкових матеріалів підтверджує їх суттєву відмінність у порівнянні з відповідними масивними зразками [3, 4]. Причинами таких змін можуть бути, як структурні перетворення так і розмірні ефекти: залежність питомого опору (р) чи температурного коефіцієнту опору (ТКО) від геометричних розмірів плівки або середнього розміру кристалітів (L). Автори [5, 6, 7] пов'язують такі прояви з поверхневим та зерномежовим розсіюванням носіїв заряду. Отже, важливим етапом, у розумінні фізичних процесів, що протікають в багатокомпонентних чи гетерогенних плівкових матеріалах є вивчення розмірних ефектів у одношарових плівках, що входять до їх складу [8]. Цьому сприяє і підвищений інтерес до магнітних плівкових матеріалів на основі феромагнітних Fe, Co і благородних Pd, Pt, оскільки в них в залежності від концентрації, товщини і технологічних умов осадження та подальшої обробки, можуть реалізовуватися

анізотропний чи гігантський магніторезистивні ефекти [1, 2, 8].

Отже, метою роботи стало вивчення розмірних ефектів та визначення внеску розсіювання носіїв заряду у величини ρ і ТКО (β) одношарових плівок феромагнітних Fe і Co та немагнітних Pd і Pt.

Методика і техніка експерименту

Процес отримання і дослідження одношарових плівкових зразків проводився на базі стандартної вакуумної установки ВУП-5М, з урахуванням вимог вакуумної техніки. При конденсації плівок тиск газів залишкової атмосфери у робочому об'ємі становив ~ $10^{-3} - 10^{-4}$ Па. В якості вихідних матеріалів використовувалися метали високої чистоти: Pt (99,95%), Fe (99,99%), Pd (99,95%), Co (99,99%). Температура підкладки під час формування плівкових систем підтримувалася в інтервалі T_{Π} =300-500К (близькою до температури Дебая метала: θ_{D}^{Fe} =467 К, θ_{D}^{Pt} =230 К, θ_{D}^{Co} =385К, θ_{D}^{Pd} = 275К [9]).

Швидкість конденсації, що розраховувалась за кінцевою товщиною та часом осадження шару металу становила 1,0–1,5 нм/с. З метою стабілізації, свіжосконденсовані плівки витримувалися у вакуумі протягом 0,5–1,0 години при температурі підкладки. Товщини зразків в процесі осадження контролювалися методом кварцового резонатора, який, при роботі з тонкими (до 50 нм) плівками є більш ефективним у порівнянні з оптичними.

При вимірюваннях електричного опору плівок нами використовувався універсальний мультиметр UT70D і показання знімались за двоточковою схемою з точністю ±0,01 Ом. Температура вимірювалась мультиметром UT70B на основі диференційної хромель-алюмелевої термопари розташованої у вакуумній установці на одному рівні з підкладкою.

Виходячи з поставлених задач, дослідження фазового складу та кристалічної структури плівок проводилися за допомогою електронного просвічуючого мікроскопа ПЕМ-125К. З урахуванням методики отримання полікристалічних плівок, метали попередньо напиляли на свіжосконденсовані плівки вуглецю товщиною ~10нм розміщені на покривному склі або свіжих зколах (001) NaCl. На основі мікроскопічних досліджень одношарових плівок товщиною 5 - 100 нм було розраховано середній розмір кристалітів L (рис. 1).

Встановлено, що кристалічна структура досліджуваних зразків є типовою для тонких плівок (Со, Fe, Pd, Pt). Вона дрібнодисперсна, з середнім розміром зерна, у вказаному інтервалі товщин, для плівок ГЩП-Со L \approx 10-20 нм (ГЦК-Со L \approx 2-4 нм) та для ОЦК-Fe не перевищує 10-15 нм. При збільшенні товщини зразків в діапазоні від 30 до 100 нм відбувається незначне зростання величини L, але можна зазначити, що розмір кристалітів слабо залежить від товщини плівки (d). Невідпалені зразки ГЦК-Pt і ГЦК-Pd теж мають високо дисперсну структуру з середнім розміром кристалітів 2-6 нм в діапазоні товщин 5-25 нм, який зростає до 6-10 нм при збільшенні товщини зразка до 30-100нм.

Рисунок 2 ілюструє розмірні залежності питомого опору та ТКО для одношарових плівок Fe, Co, Pd і Pt. Отриманий нами характер розмірних залежностей електрофізичних властивостей узгоджується з відомими літературними даними [4,7, 10, 11].

Рисунок 1 – Електронограми і мікроструктура невідпалених плівок Fe (а), Co (б),Pd (в) і Pt (г) товщиною *d*≅30нм Авторська розробка

одношарових плівок Авторська розробка

Як видно з рисунку 2, в усіх випадках величина ТКО монотонно збільшується з ростом товщини плівки, поступово наближаючись до асимптотичного значення β_{∞} . На відміну від ТКО, значення питомого опору,

всіх розглянутих плівок, зменшується при зростанні товщини зразка. Питомий опір також виходить на насичення асимптотично наближаючись до ρ_{∞} .

Порівняння відповідних величин для плівок з різним ступенем дисперсності кристалітів (рисунок 2) показує, що у зразках Pd i Pt товщиною 5-10 нм, де середній розмір зерна 2-4 нм, питомий опір у 1,5 - 2 рази більший у порівнянні зі зразками такої ж товщини Fe i Co, для яких $L \approx 10$ нм Збільшення значення L у плівкових зразках супроводжується зменшенням ρ і збільшенням ТКО.

Методика визначення асимптотичних значень ρ_{∞} та β_{∞} передбачає перебудову відповідних розмірних залежностей для плівок у системі з ординатою $\beta^{-1}d$ і абсцисою d у відповідності зі співвідношенням (1) в рамках ізотропної моделі К. Тельє, А. Тоссе та К. Пішар [11], до переваг якої можна віднести можливість застосування за умови L < d

$$\beta^{-1}d \cong \beta_{g}^{-1}d + \frac{3}{8}\beta_{0}^{-1}\lambda_{0}ln(p^{-1}).$$
(1)

Для знаходження ρ_{∞} використовувався аналогічний підхід описаний авторами [10]. З графіка лінійної залежності $\rho d \cong \frac{3}{8} \lambda_0 (1-p) \rho_{\infty} + \rho_{\infty} d$, за умови $d >> \lambda_0$, можна знайти величину ρ_{∞} , як тангенс кута нахилу отриманої прямої. Додатково, за величиною відрізка, що відтинає вказана пряма на осі ординат, можна визначити $\lambda_0 (1-p)$, де *p*- коефіцієнт дзеркальності, і оцінити значення середньої довжини вільного пробігу (λ_0) електронів.

В таблиці 1 представлено отримані асимптотичні величини ρ_{∞} і β_{∞} у порівнянні з даними для ρ_0 і β_0 масивних зразків. Аналіз такого порівняння, показує, що найменше асимптотичні величини ρ_{∞} і β_{∞} відрізняються від відповідних ρ_0 і β_0 у плівках Fe ($\rho_{\infty}/\rho_0=1,16$, $\beta_{\infty}/\beta_0=0,7$) і Pd ($\rho_{\infty}/\rho_0=1,87$ і $\beta_{\infty}/\beta_0=0,7$) тоді, як у Co ($\rho_{\infty}/\rho_0=3,69$, $\beta_{\infty}/\beta_0=0,8$) і Pt ($\rho_{\infty}/\rho_0=6,59$ і $\beta_{\infty}/\beta_0=0,9$) ці відмінності більші. Загальним для всіх розглянутих плівкових зразків є те, що незалежно від ступеня дисперсності кристалітів $\rho_{\infty} > \rho_0$, а $\beta_{\infty} < \beta_0$, що ілюструють залежності представлені на рисунку 2.

Таблиця 1 - Значення питомого опору і ТКО для масивних зразкії
та нескінченно товстих плівок

Метал	Питомий опі	р ·10 ⁷ , Ом·м	ТКО 10 ³ , К ⁻¹		
	$ ho_{\scriptscriptstyle\infty}$	$ ho_{_0}$ [9]	$oldsymbol{eta}_{\scriptscriptstyle\infty}$	$\beta_{_0}[9]$	
Fe	1,14	0,98	4,25	6,51	
Co	2,07	0,56	4,06	6,04	
Pd	1,82	0,97	2,53	3,77	
Pt	7,05	1,07	3,46	3,96	

Аналізуючи результати дослідження питомого опору і ТКО одношарових плівок в інтервалі товщин 10-100 нм слід відмітити, що найвиразніше розмірні залежності проявляються в області до 60 нм. При збільшенні товщин плівок ступінь вираження розмірного ефекту і залежить ρ і β від середнього розміру кристалітів слабішає. Так, для плівок Pd і Pt при d≥60 нм питомий опір вже мало відрізняється від ρ_{∞} , тоді як для плівок Fe і Co при товщині зразків 60 нм, ця різниця ще залишається суттєвою аж до 80-90 нм. Питання причин такої залежності розглядались в роботі [12]. На думку автора, на розмірну залежність питомого опору найбільше впливає ефективність розсіювання електронів зовнішніми поверхнями. Так, для монокристалічних зразків з значним коефіцієнтом дзеркальності питомий опір зменшується з ростом товщини значно швидше і раніше виходить на насичення, ніж у полікристалічних зразках, для яких коефіцієнти дзеркальності менші [12]. Отже, для розуміння поведінки розмірних залежностей питомого опору і ТКО, важливо визначити внесок, в дані величини, відомих механізмів розсіювання електронів.

Розрахунок внеску зерномежового та поверхневого розсіювання електронів

Відомо, що електрична провідність металів в першу чергу обумовлена дрейфом електронів провідності під дією зовнішнього електричного поля. Отже причиною опору металевого зразка є розсіювання електронів на фононах і дефектах, на зовнішніх поверхнях плівки та межах зерен. Вважаючи механізм розсіювання адитивним, автори [4] розробили методику розділення внеску кожного з перелічених факторів і записали вираз для питомого опору плівки в наступному вигляді:

$$\rho = \rho_0 + \rho_{gb} + \rho_d, \quad \rho_0 + \rho_{gb} = \rho_\infty = \lim_{d \to \infty} \rho, \quad (2)$$

де ρ_{gb} , ρ_d - питомі опори, обумовлені зерномежовим і поверхневим розсіюванням відповідно.

В роботі [4] автори, шляхом логарифмічного диференціювання за температурою із формули (2) отримали вирази, які дають змогу також розрахувати внесок у ТКО зазначених механізмів розсіювання:

$$\beta_{gb} = \frac{\rho_{\infty}\beta_{\infty} - \rho_0\beta_0}{\rho_{gb}}, \ \beta_d = \frac{\rho\beta - \rho_{\infty}\beta_{\infty}}{\rho_d}.$$
 (3)

Необхідно відмітити, що при визначенні ρ_d , ρ_{gb} , β_d та β_{gs} за співвідношеннями 2 і 3, використовувались дані про питомий опір і ТКО нескінченно товстих плівок (ρ_0 і β_0 відповідно) та розраховані асимптотичні величини (ρ_{∞} і β_{∞}) наведені в таблиці 1. В таблиці 2 систематизовано результати розрахунків ρ_d , ρ_{gb} , β_d та β_{sb} .

Дані наведені в таблиці показують, що найбільші значення ρ_{gb} відповідають нанокристалічним плівкам Рt. Величина ρ_{gb} зменшуються з ростом середнього розміру зерна і мінімальне значення приймає у плівках Fe з найбільшим *L* серед цих чотирьох металів. Значення ρ_d теж найбільші для плівок Рt та мають розмірну залежність для всіх досліджуваних зразків, яка проявляється у зменшенні ρ_d зі збільшенням товщини плівки. Так, при збільшенні товщини плівки від 10 до 40 нм, ρ_d зменшується у 3,3 рази для Pd (у 2,4 і 2,7 у випадку Pt і Со відповідно) та у 1,9 для Fe. Такий результат підтверджує висновок автора [4] про залежність питомого опору, обумовленого поверхневим розсіюванням електронів, від товщини плівкових зразків і ступеня дисперсності кристалітів. Для всіх плівок відношення $\left| \frac{\rho_{gb}}{\rho_{gb}} \right|$ приймають

максимальні значення у випадку найбільшої товщини зразка (100 нм). Цей факт ше раз пінкреснює значими родь поверхневого розсіювання електронів у

ще раз підкреслює значиму роль поверхневого розсіювання електронів у електрофізичних властивостях нанорозмірних полікристалічних зразків.

Метал	$ ho_{gb} \cdot 10^8,$ Ом·м	$\beta_{gb} \cdot 10^3,$ K^{-1}	<i>d</i> , нм	<i>ρ_d</i> ·10 ⁸ , Ом·м	$\beta_d \cdot 10^3, \\ \mathrm{K}^{-1}$	$rac{ ho_{gb}}{ ho_{d}}$	$\left rac{oldsymbol{eta}_{gb}}{oldsymbol{eta}_{d}} ight $
Pd	8,50	1,11	10	72,81	0,31	0,12	3,58
			100	1,84	-3,55	0,39 4,60	0,82 0,31
Pt	59,81	3,37	10	110,52	0,09	0,54	37,44
			40	45,54	0,76	1,31	4,43
			100	28,30	3,35	2,11	1,01
Со	15,12	3,33	10	57,30	-1,04	0,26	3,20
			40	21,34	-1,73	0,71	1,92
			100	14,32	-1,95	1,06	1,71
Fe	1,62	-9,59	10	95,61	-0,77	0,02	12,45
			40	48,70	-1,56	0,03	6,14
			100	6,52	-3,79	0,25	2,53

Таблиця 2 - Відносний внесок зерномежового та поверхневого розсіювання у питомий опір та ТКО

Авторська розробка

Аналіз даних, наведених в таблиці 2 показав, що у відповідності з висновками автора [4], значення β_{gb} теж визначається ступенем дисперсності кристалітів плівкового зразка. Наприклад, для нанокристалічних плівок Pd значення β_{gb} найменші та приймають максимальне значення для плівок Fe з відносно більшим середнім розміром зерна. Залежність величини β_d від L виражена слабко. На думку авторів [4, 10] пояснюється це одночасною залежністю ТКО плівки від величин з протилежною тенденцією змін: провідність зростає, а величина $\Delta \rho / \Delta T$ зменшується з ростом товщини зразка.

Відношення ρ_0 / ρ , ρ_{gb} / ρ та ρ_d / ρ дають можливість визначити статистичну вагу внеску у питомий опір та ТКО кожного із зазначених вище механізмів розсіювання електронів та порівняти їх між собою. Наприклад, при збільшенні товщини плівок Рt від 40 до 100 нм (рисунок 2), відношення ρ_0 / ρ

зростають від 0,09 до 0,11 разом із зростанням ρ_{gb}/ρ від 5,14 до 6,23, в той час, як ρ_d/ρ зменшується від 0,36 до 0,22. Результати, аналогічні приведеним, було отримано для всіх досліджуваних плівок. Тобто, із зменшенням товщини зразка, відбувається зростання внеску поверхневого розсіювання у загальну величину ТКО на фоні зменшення об'ємного і зерномежового. На думку автора [4, 7, 10], саме розсіювання носіїв заряду на зовнішніх поверхнях пояснює причину високих значень питомого опору та низьких ТКО у плівках малої товщини. Отже, для нанорозмірних нанокристалічних плівкових зразків, в яких поверхневе розсіювання дає основний внесок, питомий опір та ТКО повинні значно відрізнятись від β_0 , у порівнянні з крупнокристалічними зразками.

Висновки.

Було встановлено, що для полікристалічних одношарових плівок Fe, Co, Pd і Pt в інтервалі товщин 10-100 нм найвиразніше розмірні залежності питомого опору і ТКО проявляються в області до 60 нм. При збільшенні товщин плівок ступінь вираження розмірного ефекту залежить від середнього розміру кристалітів і слабіше виявляється у зразках товщиною 80-100 нм.

Розрахунки показали, що зі зменшенням товщини зразків Fe, Co, Pd і Pt в інтервалі 10-100 нм, відбувається зростання внеску поверхневого розсіювання у загальну величину питомого опору і ТКО на фоні зменшення об'ємного і зерномежового розсіювання електронів.

Література:

1. L1₀ ordered thin films for spintronic and permanent magnet applications / Hafarov A, Prokopenko O, Sidorenko S, Makarov D, Vladymyrskyi I Modern Magnetic and Spintronic Materials (NATO Science for Peace and Security Series B Physics and Biophysics) eds A Kaidatzis, S Sidorenko, I Vladymyrsky, D Niarchos (Dordrecht: Springer), 2020. pp 73–94 DOI: 10.1007/978-94-024-2034-0_4

2. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications / I. Ennen, D. Kappe, T. Rempel, C. Glenske, A. Hütten, Sensors, 2016. V. 16(6). 904 <u>https://doi.org/10.3390/s16060904</u>

3. Пазуха І.М., Проценко С.І. Вплив інтерфейсного розсіювання на електрофізичні властивості плівкових матеріалів // Вісник СумДУ. Серія: Фізика, математика, механіка. – 2005. – №8 (80).–С. 148–153.

4. Чорноус А.М. Розмірні ефекти в електрофізичних властивостях нанокристалічних плівкових систем в умовах взаємної дифузії та фазоутворення: Автореф. дис. ... доктора ф.-м. наук : 01.04.07 // Сумський державний університет. – Суми, 2006. – 37 с.

5. Белевцев Б.И., Комник Ю.Ф., Однокозов В.И. Рассеяние электронов на границах кристаллитов и поверхности поликристаллических пленок Pb // ФТТ. – 1984. – Т. 26, Вып. 11. – С. 3274–3279.

6. Білоус О.А., Проценко І.Ю., Чорноус А.М. Вплив ступеня дисперсності кристалітів на параметри електропереносу металевих матеріалів // ФХТТ. – 2003. – Т.4, №1. – С.48 – 57.

7. Однодворець Л.В. Електрофізичні і магніторезистивні властивості

багатошарових та гетерогенних плівкових матеріалів сенсорної техніки: Автореф. дис. ... доктора ф.-м. наук : 01.04.01 // Сумський державний університет. – Суми, 2016. – 39 с.

8. The contribution to the scattering of electrons in the magnetoresistance of multilayers of nonmagnetic metals / I.Yu. Protsenko, L.V. Odnodvorets, S.I. Protsenko, M.O. Shumakova. 2016. PAST, V. 101. №1. P. 121–123.

9. Физико-химические свойства элементов [Справочник] / Под ред. Г.В. Самсонова. – Киев: Наук. думка. – 1965. – 807 с.

10. Проценко І.Ю., Саєнко В.А. Тонкі металеві плівки (технологія і властивості). – Суми: СумДУ, 2002. – 187 с.

11. C.R. Tellier, A.J. Tosser. Size effects in thin films. Amsterdam–Oxford– New York: Elsevier, 1982, 310 p

12. Комник Ю.Ф. Физика металлических пленок. Размерные и структурные эффекты. – Москва: Атомиздат, 1979. – 264 с.

Abstract. In the paper, based on experimental data, the contribution of grain boundary and surface electron scattering to the resistivity and temperature coefficient of resistance of single-layer polycrystalline films of Pd, Pt, Fe, and Co in the thickness range of 10-100 nm is calculated. The dimensional dependence of the relative contribution of grain boundary electron scattering on the thickness of the sample and on the average crystallite size was confirmed..

Key words: grain boundary scattering, dimensional effects, polycrystalline metal films, resistivity, TCR.

Стаття відправлена: 17.02.2023 р. © Гричановська Т.М.