

 Modern engineering and innovative technologies Issue 26 / Part 1

ISSN 2567-5273 www.moderntechno.de 91

http://www.moderntechno.de/index.php/meit/article/view/meit26-01-001
DOI: 10.30890/2567-5273.2023-26-01-001

UDC 004.21
PROTECTION OF SOFTWARE SYSTEMS FROM VIOLATION OF

PROGRAM CODE INTEGRITY
Krykunov D.

Ph. D., student
ORCID: 0000-0003-0475-8081

Cherkasy State Technological University,
460 Shevchenko Blvd., Cherkasy, 18006, Ukraine

Abstract. Protection of program code from software modification is currently a very relevant

area of science, since after the imposition of sanctions on the aggressor countries, the purchase and
use of licensed software has decreased and the use of unlicensed software has increased. Despite
the large number of methods for protecting software against code modification, they are ineffective,
namely, the large number of methods for partially or completely disabling this protection. Due to
sanctions or other factors, a person who does not have a current software license should not be
able to use or edit the program code in order to provide access to use the software.

The purpose of this article is to collect and analyze the available information in the field of
program code protection against modification in order to show the level of research of the scientific
problem, to give a critical assessment and conclusions based on published works and to formulate
the purpose of further development.

Key words: software protection, program code modification, encryption, steganography,
hashing, obfuscation.

Introduction
Software protection is a set of measures aimed at protecting software from

unauthorized acquisition and use, modification and study of program code and
reproduction of analogues.

The development and support of algorithms for protecting software systems
from violating the integrity of the program code is a very progressive area of software
engineering. Software protection against program code modification protects
software from hacking. With the help of protection methods, it is possible to
complicate modification and detect modified software. Programs that require
program code protection include operating systems, networking and communication
programs, text and graphic editors, game modules, compilers, and other software.
Currently, there are no software protection methods that can fully protect them.

Software protection against modification of program code can have several
purposes:
− Prevent unauthorized changes. Protecting your application code from

modification can help prevent unauthorized changes that could lead to security
breaches, incompatibilities, and other problems. For example, an attacker could
modify the program code to inject malicious code or steal confidential
information.

− Maintaining program integrity. Protecting program code from modification can
also help preserve program integrity. If the program code is changed without
taking into account all aspects of its operation, it can lead to crashes, errors, and
other problems.

 Modern engineering and innovative technologies Issue 26 / Part 1

ISSN 2567-5273 www.moderntechno.de 92

− Compliance with legal requirements. In some industries, such as financial and
healthcare, there are legal requirements related to protecting confidential
information and maintaining software integrity. Protecting application code
from modification can help organizations comply with these requirements.

− Protection of intellectual property. Protecting program code from modification
can help preserve intellectual property by preventing copying of the program or
changing its functionality without the permission of the copyright holder, and
can also be used to obtain guarantees for the use of licensed software, namely, to
prevent the circumvention of license verification in the software.
Especially now, during the imposition of sanctions against aggressor countries,

the area of software protection against code modification is very relevant, because
many users from these countries use software without an up-to-date license, thus
generating profits and paying taxes to the aggressor country, which go to the military
sphere and are used for military aggressions against peaceful countries. It is necessary
to conduct research in this direction in order to complicate the economic situation in
the countries on which sanctions are imposed.

In general, protecting software from modification of the program code is an
important measure to ensure security, intellectual property protection, and software
integrity.

Protection mechanisms that can effectively protect software running in untrusted
environments should have the following properties:

1. Resilience. The protection has no single points of failure and is hard to disable.
2. Self-defense. Able to detect and take actions against tampering.
3. Configurability. Protection is customizable and can be made as strong as one

needs.
4. White-box security. Because any scheme for protection is likely to become

publicly known over time, its strength should not be based on its secrecy but
rather on the knowledge of a secret key used at protection-install time (but not
stored anywhere within the protected program). [1]

Security systems should perform such functions as:
 Identification of protected resources.
 Authentication of protected resources, i.e. establishing their truth based on

comparison with a reference.
 Define access rights to protected resources.
 Registration of user login to the system and registration of exit from it.
 Registering reactions to access rights violations.
 Processing of registration logs.
 Control of integrity and operability. Control and delimitation can be performed

on the basis of tables. [2]
Collection and analysis of available information in the field of program

code protection from modification
In order to analyze the information that will help to complicate and make it

impossible to edit software worldwide, and especially in the aggressor country, and to
understand the study of this issue on their side, it is also necessary to collect
information from scientific papers that have been presented in this country.

 Modern engineering and innovative technologies Issue 26 / Part 1

ISSN 2567-5273 www.moderntechno.de 93

Scientific problems in the field of software protection against code modification
are solved with the help of such protection methods as encryption, steganography,
hashing, compression, obfuscation, remote monitoring, regular updates.

1. Encryption of a program is used to prevent disassembly and modification of the
program code. This method complicates the work of a reverse engineer, but the
written decryptor returns a simplified program code that can be used to modify
the program. [3]

2. Steganography disguises the key information needed to decrypt the code as the
executable program code. [3] The advantage of steganography is that the
information does not attract attention. It can be implemented by using various
methods, such as changing bytes of program code, implementing secret
messages in metadata, using unused bytes, etc. [4]

3. Hashing calculates check hashes and compares them with the reference hashes
that are embedded in the software. [3]

4. Compressing sections of the code being executed, or the entire code, transforms
the output to a different form. The advantages of this method include the fact
that it makes analysis more difficult and reduces the size of the program, but any
compression functions can be identified, especially if they are popular functions
such as UPX or ASPack. [3]

5. Remote monitoring involves the program sending information about its work to
a remote server where it can be analyzed.

6. Regular software updates can prevent vulnerabilities from being exploited to
modify the code.

7. Code obfuscation transforms the program code in such a way that it becomes
difficult to understand or incomprehensible to the reverse engineer. This may
include changing the names of variables, functions, and classes, removing
comments and spaces, rearranging code, and using other techniques to make it
difficult to understand the program structure. Code obfuscation can reduce the
ability of attackers to analyze the program and conduct attacks. This method of
protection is one of the most popular methods. [5] There are the following types
of obfuscation:
• Lexical obfuscation. It involves changing identifiers, keywords, symbolic

constants, and other elements of the programming language to make it
harder for a reverse engineer to understand the code.

• Data obfuscation. Changing data structures, variable declaration sequences,
and transforming data stores.

• Preventive obfuscation. This type of obfuscation is designed to prevent the
successful application of deobfuscators to the code of a software product. It
is aimed at exploiting the shortcomings of deobfuscation tools often used in
software. [6]

• Obfuscation of string literals. The method is based on the peculiarities of the
pseudo-random number generator: with the same initial seed value, the
sequence of numbers is always the same. The result of the method is an
array of numbers that reflects the array and, due to the symmetry of the
algorithm, can be converted back to a string. [7]

 Modern engineering and innovative technologies Issue 26 / Part 1

ISSN 2567-5273 www.moderntechno.de 94

• Obfuscation of logical expressions. Use of logical expressions that have
been simplified or collapsed. [7]

Some of these methods can be used in conjunction to create a more robust
software protection against code modification.

Analyzing the existing analogues, it is possible to give a critical assessment of
each method of protection:

1. Cryptographic methods of protection in client software are not reliable because
the program must be run from the source code, and for this source code to
appear, a program or module that decrypts the code must go with this program.
If the reverse engineer has this software or module, he has full access to the
program code of the software that is the target of the hack.

2. Stenographic methods of protection are ineffective, as integrated development
environments can refer to places in the software code where information is
hidden. Also, software steganography can be used by attackers to secretly
transmit malicious code.

3. The method of comparing checksums has a good basis, but a reverse engineer
can also calculate checksums and replace them in the program code, or remove
the checksum comparison module altogether.

4. Using separate programs for comparing checksums is also not a reliable
solution, because the individual software must also be protected from
modification of the program code.

5. Remote monitoring is a good method, but a reverse engineer can intercept
messages from unmodified software to a remote server, modify the program
code, and send fake messages back to the remote server to show that the
software has not been modified.

6. Regular updates will not give a good result, as the reverse engineer will be able
to make the software automatically modify modules in new versions of the
software being modified.

7. Obfuscation methods can only make the software code more complex, but it is
possible to see the logical structures in it. So, a reverse engineer only needs one
successful deobfuscation to get the first version of the program. In all
subsequent versions of the software, the reverse engineer can use the code from
the previous version of the program, replacing the same logical structures, and
perform deobfuscation on new, unprocessed parts of the program code.

8. Lexical obfuscation is not a reliable method of protecting program code because
it can be bypassed by reverse engineering the source code. In addition, lexical
obfuscation can complicate the process of debugging and testing the program
code.

9. The obfuscation of logical expressions consists in simplifying these expressions,
which contradicts the term obfuscation and the principles of program code
security, and if logical operators are complicated, it can affect the running time
of the program code.

10. The use of a pseudo-random number generator for obfuscation using seed makes
sense only if the pseudo-random number generator is located in the obfuscation
and deobfuscation program, and not in the program library, because the version

 Modern engineering and innovative technologies Issue 26 / Part 1

ISSN 2567-5273 www.moderntechno.de 95

of the program library can change, and therefore the logic of the pseudo-random
number generator can change. It is known that random number generators in the
Java programming language and the C# programming language differ in their
operation and return different results under the same conditions.
The method of further development should be a set of algorithms built into

protected programs that will protect the software from modification of the program
code at different stages and states of the software operation, namely:

 Protecting software with client-side architecture.
 Protection of software with client-server architecture.
 Protecting the data transmission channel in client-server applications.
The quality of future algorithms can be assessed by using probability theory

formulas, and the written software with these algorithms can be evaluated by metric
analysis of software quality.

Probability theory can be used to compare data that will show the chance with
which a reverse engineer will be able to edit software without protection, with
existing protection methods, and with new protection methods.

Evaluating software quality using the results of metric analysis means that,
based on the quality indicators, the values of the relevant quality metrics and the
value of the complex quality indicator in the future software are calculated.

Metric analysis helps to solve such practical problems as:
1. Predicting the number of errors in software from the beginning of design.
2. Predicting the level of software complexity and its maintenance based on the

analysis of design results.
3. Predicting the level of complexity of testing processes and the number of

undetected errors based on the analysis of the program code.
4. Predicting the final size of the program code based on the analysis of

software architecture design complexity estimates.
5. Determining the impact of certain characteristics of the program code on the

quality of the finished software.
6. Control of the stages of software implementation.
7. Analysis of obvious and hidden defects in the finished software.
8. Identification of the best software development methods and technologies

based on their comparison.
9. It helps to identify and fix software problems, improve efficiency, and

reduce the risk of errors. [8]
Summary and conclusions
The analysis of existing methods of solving the problems of protecting programs

from program code modification has shown that each method has a sufficient number
of shortcomings that will negatively affect the success of software protection against
disassembly and modification of program code, and no method can provide complete
protection against such malicious actions.

Since each protection method does not fully protect the program, but only slows
down the reverse engineer's work, we can conclude that disassembling and modifying
the program code makes sense if it is commercially feasible and if there is time to
obtain information, i.e., the main purpose of protection methods is operations that

 Modern engineering and innovative technologies Issue 26 / Part 1

ISSN 2567-5273 www.moderntechno.de 96

make it inexpedient, or rather economically unprofitable, for an attacker to act.
It can also be concluded that the vast majority of protection methods use various

types of obfuscation, from which you can always get unobfuscated code using self-
written deobfuscators or existing ones and then edit the software.

The method of further development will be a set of algorithms for protecting
program code at different stages and states of software operation.

The quality of further development should be assessed with the help of:
 Probability theory formulas to compare the chances of a reverse engineer

being able to edit the software.
 Metric analysis of software quality.
As a result of the work done to search and analyze the available information in

the field of protecting program code from modification, we can conclude that this
area is not sufficiently developed and has no results that could completely make the
work of a reverse engineer impossible, and the number of programs being created is
increasing every year. These factors make this area very progressive nowadays, and
further research work is needed in this area.

References:
1. Chang, H. and Atallah, M. (2002). Protecting Software Code by Guards.

Springer Link. DOI: 10.1007/3-540-47870-1_10
2. Kaplun, V., Dmytryshyn, O. and Baryshev Y. (2014). Protection of the

software. Institutional repository of Vinnytsia National Technical University.
Retrieved from https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/14257/Kaplun-
6678619f16033b998a0c233b1e652488.pdf?sequence=1&isAllowed=y

3. Butyn, A. (2018). Methodological aspects of software protection systems
development. Cyberleninka. Retrieved from
https://cyberleninka.ru/article/n/metodicheskie-aspekty-razrabotki-sistem-zaschity-
programmnogo-obespecheniya/viewer

4. Herasymova, I. (2017). Obfuscation as one of the methods of protecting
program code. Bauman Moscow State Technical University Kaluga. Retrieved from
https://conference.bmstu-kaluga.ru/uploads/userfiles/april_2017_tom_3.pdf#page=98

5. Behera, C. and Lalitha Bhaskari, D. (2015). Different Obfuscation Techniques
for Code Protection. Science Direct. DOI: 10.1016/j.procs.2015.10.114

6. Bondarchuk, A., Kornaga, Y., Bazaliy, M., Serhiyenko, P. and Ilin, O. (2020).
A method of protecting program code from analysis by obfuscation.
Telecommunications and Information Technologies. DOI: 10.31673/2412-
4338.2020.045051

7. Davydov, V. (2021). Models and methods of increasing the bytecode-oriented
software security of during cyberattacks. Repository of Cherkasy State Technological
University. Retrieved from https://er.chdtu.edu.ua/handle/ChSTU/2577

8. Hrytsiuk, Y. and Andrushchakevych, O. (2018). A tool for determining the
quality of software by methods of metric analysis. Scientific Bulletin of UNFU. DOI:
10.15421/40280631

