
 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 106 

http://www.moderntechno.de/index.php/meit/article/view/meit26-01-063 
DOI: 10.30890/2567-5273.2023-26-01-063 

UDC 519.16 
SOFTWARE ARCHITECTURE FOR SOLVING LARGE-SCALE 

TRAVELING SALESMAN PROBLEMS 
Bazylevych R. P.  

d.t.s., prof. 
ORCID: 0000-0002-7949-1353 

Lviv Polytechnic National University, St. Bandery str. 12, Lviv, 79013 
Kutelmakh R.K.  

c.t.s..  
ORCID: 0009-0008-6499-1161 

Lviv Polytechnic National University, St. Bandery str. 12, Lviv, 79013 
Bhanu Prasad*  

Professor 
Department of Computer and Information Sciences, Florida A&M University,  

Tallahassee, Florida 32307, USA.   
*Corresponding author 

 
Abstract. The architecture of a cross-platform software for solving large-scale Traveling 

Salesman Problem (TSP) is presented. According to this architecture, the software consists of a 
central control module and additional modules - input data, input data processing, input/output 
data visualizers, and algorithm library. The developed software can be used to solve large-scale 
TSP (more than 100,000 points) while ensuring that the length of the solution is within 0.5% above 
the optimum and the solution is generated in an acceptable amount of time. The algorithms 
integrated into the software have computational complexity close to linear-logarithmic, which 
makes it possible to reduce the runtime of the solutions. 

Key words: Traveling salesman problem, decomposition, large-scale, software, architecture, 
combinatorial optimization, algorithm 

Introduction 
Traveling Salesman Problem (TSP) [1, 2] has a wide range of applications in 

areas such as transportation systems, automated design, integrated circuits testing and 
manufacturing, printed circuit boards, laser cutting of plastics and metals, protein 
structure study, continuous line drawing technology, embroidery, welding, X-ray 
crystallography, etc. An important feature of these TSPs is their large-scale, which, 
for many of them, is more than several million points. TSP refers to NP-hard 
problems because TSP has factorial computational complexity. This makes it difficult 
to obtain exact solutions in a reasonable amount of time for large-scale TSPs.  

Existing software for solving TSP [3, 4] is based on algorithms that have a 
quadratic and higher computational complexity and cannot be used for large-scale 
problems. Helsgaun developed the most effective heuristic algorithm, LKH, for 
solving the TSP [5 - 7]. As the experiments show, LKH provides a solution which is 
within 0.1-0.2% length above the optimal one and the solution is generated in an 
acceptable amount of time. The computational complexity of the LKH algorithm is 
O(N2.2), where N is the total number of points in the TSP. 

Several decomposition algorithms for solving large-scale TSPs were developed: 
a macro modeling method for clustered TSP [8], a partial solution expanding method 
for arbitrary distribution of points [9], initial solution optimization methods – 



 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 107 

sequential optimization [10], geometric areas optimization, and triangulation-based 
optimization [11]. The developed methods can be used for large-scale TSPs, as 
proved by the experiments [12]. These developed algorithms have a computational 
complexity close to linear-logarithmic. According to these developed methods, the 
process of solving a TSP consists of the following stages: 

• forming a set of clusters or subsets of points, depending on the distribution 
of the points; 

• finding an initial solution; 
• optimization of the initial solution. 

It is appropriate to develop an applied software system for solving large-scale 
TSP based on these methods. In order to have efficient calculations, special data 
structures and algorithms have been developed in this research. 

Problem formulation 
TSP is formulated as follows: given a set of points P, described by the 

coordinates: 
P = {p1, p2, …, pN}, where pi = (xi, yi) for i  ∈ {1, 2, …, N}; 

 
and the metric dist: P x P → R on set P: 
 

distE (pi, pj) = 
22 )()( jiji yyxx −+−  for i, j ∈{1, 2, …, N} (Euclidean metric)     (1) 

distO (pi, pj) = |||| jiji yyxx −+−   for i, j ∈ {1, 2, …, N} (orthogonal metric)      (2) 
 
the problem is to minimize the length of the closed route M, which visits all the 
points of P: 

len M → minimum,        (3) 
 
where M = <m1, m2, …, mN >, where mi ∈ P and |M | = N; and 

 
len M  =   dist(mi, mi+1) + dist(mN, m1) is the route length function.     (4) 

 
The problem is considered symmetric TSP if dist(pi, pj) = dist(pj, pi), otherwise   

it is asymmetric TSP. Under the condition of returning to the initial point, the 
problem is called closed TSP, otherwise it is unclosed TSP. 

Related works 
Experimental investigation of the efficiency of the existing TSP solving methods 

was carried out.  The "Concorde" [3] software and LKH [4] heuristic were chosen for 
the experiments. According to the experimental results, the exact method 
implemented in “Concorde” software provides a relatively quick optimal solution for 
the TSPs with no more than 1,000 points. As the experiments show, LKH heuristic 
does not guarantee optimality (but the solution quality is near-optimal). LKH 
provided optimal solutions for all TSPs except for those with 1,000 points. For a TSP 
with 1,000 points, the solution quality of the LKH method is 0.043% above the 
optimal, which is near-optimal. Fig. 1 illustrates: (a) the characteristics of some 
existing heuristic methods for solving the TSP, (b) their deviations from the optimal 
solution, and (c) their computational complexity. 



 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 108 

 
Figure 1 – Runtime characteristics of some heuristic methods for solving TSP 

 
Proposed software architecture for solving large-scale TSP 
The software architecture of the system for optimizing large-scale TSPs is 

presented. The system is named "VRP Modeler" and consists of a central control 
module and additional modules. The control module is responsible for basic functions 
for manipulating abstract documents, method libraries, visualization modules, and 
input data generators. Additional modules contain methods, visualizers, and data 
handlers.  

The main components of the software are: 
• central control module; 
• modules for visual viewing input data, output data, and intermediate results; 
• input data generators module; 
• input data processing module; 
• method libraries for solving the problem. 
Fig. 2 shows the structure of VRP Modeler and the links between its 

components. The Input Data module accepts the input data. The input can be either in 
TSPLIB format (TSPLIB is the library that contains known TSP instances with points 
ranging from 14 to 85,900) or generated automatically by an algorithm according to 
given settings such as the number of points, clustered or uniform distribution of 
points, etc. This input is supplied to the Input Data Processing module where the 
input is converted to an internal format. E.g., in the internal format, the data (i.e., set 
of points) can be presented as a one-dimensional array of elements, and the route can 
be presented as a two-level bidirectional linked list. 

The input in the internal format is supplied to the Control module that works as 
a hub between various other modules of the system. Further, the data is submitted to 
the Input Data Visualization module where it is displayed in the application window. 
The Input Data Visualization module is a set of C++ classes for configuring and 
displaying the data of the given TSP. E.g., each point can be visualized as a circle, 



 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 109 

rectangle, rhombus, etc., and a scale for increasing or decreasing the accuracy of 
calculations, rotating the problem area, and mirroring the area. 

 

 
Figure 2 – Schematic diagram of VRP Modeler 

 
To run a specific algorithm for solving the TSP, the Algorithms Library module 

is used. This library consists of some existing and developed algorithms. Each 
algorithm has its own settings like the initial route, basic algorithm, number of 
iterations, scanning area size, overlapping area size, etc. After the execution of an 
algorithm, the resultant data is returned to the Control module.  The system is 
developed in such a way that new algorithms can be easily added to the system (i.e., 
add to either the Existing Algorithms module or the Developed Algorithms module). 

After the execution of an algorithm, the resultant data is transferred to the 
Output and Intermediate Data Visualization module, via the Control module. The 
Output and Intermediate Data Visualization module is an extension of the Input Data 
Visualization module and uses specific parameters according to the problem-solving 
algorithm. E.g., for a method based on macromodeling, it "knows" and draws 
elements such as clusters of points, macroroute, elementary optimization area, etc. 
Fig. 3 shows further details about the Algorithms Library module of Fig. 2. 

Data structures to represent a route is important, especially for the program 
implementation of large-scale TSPs. Most often, the use of certain data structures 
affects the execution time. The use of k-opt leads to the reversal (i.e., reverse passage 
of points) in a particular section of the route. The time required for this operation is 
within the range from O(log2(N)) to O(N). The reverse operation will take an O(N) 
time using regular array, which is unacceptable for large-scale TSPs. It is necessary 
to use another data structure such as two-level tree or two-level double-linked list. In 
this case, the reverse operation will take O( N ) time. This is the best data structure 
for TSPs with 1,000 to 1,000,000 points. The splay-tree data structure is best for 
large-scale TSPs; in the worst case, it will take O(log2(N)) reverse time (but its 



 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 110 

implementation is more complicated). The best choice is to use arrays for small TSPs, 
two-level double-linked lists for TSPs with 1,000 to 1,000,000 points, and splay-trees 
for very large-scale TSPs (i.e., beyond 1,000,000 points). 

 

 
Figure 3 - Further details about Algorithms Library module 

 
VRP Modeler includes functionally independent components (classes), each of 

them is designed to perform certain operations. To provide flexibility in expanding its 
functionality, the software consists of a main executable module VRPModeler and a 
set of additional dynamic modules. SQLite's database configuration file contains a list 
of all modules available in the current software version. Every additional module of 
VRP Modeler contains: 

 

• description of the problems to be solved; 
• input data processing module; 
• problem solving methods module; 
• input/output data visualization module. 
 



 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 111 

Every project in VRP Modeler is a set of independent tests. In turn, every test is 
represented by a set of input data, input and output data visualizer type, and also an 
algorithm for solving a specific TSP. 

The result can be saved as a graphic or text file (TSPLIB route). Saved route in 
TSPLIB format (.tour file) can be loaded for further optimization. After opening the 
project, the user can view pre-generated input data, as well as the result from the 
investigated method. Users can also generate new input data to the existing test, 
change its number, load input data into an existing test from file, or create new test in 
the current project with other components (for example, another algorithm, visualizer 
type, etc.).  

Conclusions 
The details of a software architecture for solving large scale TSP (more than 

100,000 points) is presented. Using this software, (a) specialized decomposition 
methods for obtaining initial solutions as well as their optimization and (b) known 
heuristic methods (2-opt, 3-opt, etc.) for solving TSP can be implemented. The 
developed software can be used to solve large scale TSP while ensuring the solution 
quality within 0.5% above the optimum, and the solution can be generated in an 
acceptable amount of time. 

 
References: 
1. Applegate D. The Traveling Salesman Problem – A Computational Study / 

Applegate D.L., Bixby R.E., Chvatal V., Cook W. J. // Princeton Series in Applied 
Mathematics. – Princeton University Press. – 2006 . – 608 pp. 

2. Cook W. In pursuit of the traveling salesman : mathematics at the limits of 
computation // Princeton University Press. – 2014. – 214 pp. 

3. Concorde TSP Solver URL: 
https://www.math.uwaterloo.ca/tsp/concorde.html 

4. LKH Version 2.0.10 (November 2022) URL: 
http://akira.ruc.dk/~keld/research/LKH/ 

5. Helsgaun K. An Efficient Implementation of k-Opt Moves for the Lin–
Kernighan TSP Heuristic // Datalogiske Skrifter (Writings on Computer Science) . – 
2006. – No. 109. – Roskilde University. 

6. Helsgaun, K. General k-opt submoves for the Lin-Kernighan TSP heuristic. 
Math. Prog. Comput. – 2009 .- 1(2-3) .- pp. 119-163. 

7. Helsgaun K., An Extension of the Lin-Kernighan-Helsgaun TSP Solver for 
Constrained Traveling Salesman and Vehicle Routing Problems. Technical Report, 
Roskilde University, 2017 

8. Bazylevych R. Decomposition and scanning optimization algorithms for TSP 
/ Bazylevych R., Kutelmakh R., Prasad B., Bazylevych L. // Proceedings of the 
International Conference on Theoretical and Mathematical Foundations of Computer 
Science. – Orlando, USA. – 2008. – pp. 110-116. 

9. Bazylevych R. A decomposition algorithm for uniform Traveling Salesman 
Problem / Bazylevych R., Prasad B., Kutelmakh R., Dupas R, Bazylevych L. // 
Proceedings of the 4th Indian International Conference on Artificial Intelligence. – 
Tumkur, India. – 2009. – pp. 47-59. 



 

 Modern engineering and innovative technologies                                                                    Issue 26 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 112 

10.  R. Bazylevych, M. Palasinski, R. Kutelmakh, B. Kuz, L. Bazylevych.  
“Decomposition methods for large-scale TSP”. Artificial intelligence methods and 
techniques for business and engineering applications”, ITHEA, Rzeszow – Sofia, 
2012, pp. 148-157. 

11.  Roman Bazylevych, Marek Pałasiński, Roman Kutelmakh, Bohdan Kuz, 
Efficient decomposition algorithms for solving large-scale TSP. In book: G. Setlak, 
K. Markow. Computational models for business and engineering domains. ITHEA, 
Rzeszow-Sofia, 2014, pp. 225-234. 

12.  Bazylevych R., Kutelmakh R., Kuz B., Dupas R., B. Prasad, Y. Haxhimusa, 
L. Bazylevych, A Parallel Ring Method for Solving a Large-scale Traveling 
Salesman Problem, I.J. Information Technology and Computer Science, 2016, 5, pp. 
1-12 
 

Article sent: 20.04.2023 
© Bazylevych R.P., Kutelmakh R.K., Bhanu Prasad 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




