

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 25

http://www.moderntechno.de/index.php/meit/article/view/meit29-01-038
DOI: 10.30890/2567-5273.2023-29-01-038

MODULAR MONOLITH AS A MICROSERVICES PRECURSOR
Shablii Taras

2nd-year master’s degree student, Software Engineering
Tytenko Sergiy

Ph.D., Associate Professor
 ORCID: 0000-0002-7548-9053

American University Kyiv,
Ukraine, Kyiv, Poshtova Pl. 3, 02000

Abstract. The world of software architecture is in a constant state of evolution, and the

development of distributed architectures continues to shape the industry's landscape. Monoliths,
characterized by their unified codebase and singular deployment, have long been the traditional
choice for software development. On the other hand, microservices, with their small, independently
deployable services, have gained prominence due to their scalability and resilience. This article
explores the dynamics of monoliths and microservices, the challenges associated with this
migration, and proposes the idea of modular monoliths as a precursor to microservices to reduce
migration efforts. It also highlights the lack of research in the domain of structuring monoliths in
advance for future efficient migration to microservices.

Key words: software architecture, microservices, modular monolith
Introduction
In the world of software architecture, two dominant styles have emerged, each

with its set of advantages and disadvantages: monoliths and microservices. Monolith
is a “system in which all of the code is deployed as a single process” [1]. In this
architectural style all code resides in a single repository and forms a single
deployment artifact, all data is most often located within a single database (Figure 1).

Figure 1 - Single process monolith
A source: [1]

In contrast, a microservice (Figure 2) is a “single-purpose, separately deployed

unit of software that does one thing really, really well” [2].
While both approaches have their merits, the shift towards microservices has

been on the rise in the recent decade (Figure 3).

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 26

Figure 2 - Microservices topology

A source: [2]

Figure 3 - Raising interest in microservices architecture

A source: [3]

Monoliths vs. Microservices
Monoliths have been the traditional choice for software development for

decades. In a monolithic architecture, the entire application, from user interface to
database access, is bundled together in a single codebase. This tightly coupled nature
simplifies development but introduces challenges in terms of scalability and
maintainability [4].

Monolithic architecture provides the following benefits [5]: simplicity of

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 27

development and deployment since all code is located within a single codebase and is
deployed as a single artifact; optimal performance, since components communicate
via direct function calls without any network overhead; faster time to market since
developing and deploying a single codebase that does not require sophisticated
infrastructure. At the same time, monolithic architecture is characterized by natural
degradation of scalability (increasing capacity often involves scaling the entire
application, which can be inefficient) and maintainability (monoliths tend to become
increasingly complex and harder to maintain) [5].

Microservices, in contrast, advocate for breaking down an application into
smaller, autonomous services, each with a specific singular responsibility. These
services communicate with each other over the network, allowing for flexibility and
independent scalability [5].

The heightened interest in microservices over the past decade can be attributed
to several key factors. First, there has been a growing demand for applications with
enhanced availability, fault tolerance, and resilience, especially as businesses rely
more on digital services [6]. Microservices provide a framework for achieving these
goals by allowing individual services to fail gracefully without compromising the
entire system's functionality. Second, the rapidly evolving technological landscape
has introduced greater complexity, making it challenging to develop and maintain
monolithic applications efficiently. Microservices offer a solution by breaking down
complex systems into smaller, manageable components that can be developed,
deployed, and scaled independently [7]. Third, the surge in data volumes, driven by
the advancements of data-driven applications and IoT devices, has necessitated
scalable and distributed architectures. Microservices' ability to scale horizontally
makes them well-suited for handling data-intensive workloads [6]. Lastly,
advancements in IaaS cloud technology have made it easier to adopt microservices,
with cloud providers offering robust infrastructure, platforms and services that
facilitate the deployment and management of microservices. These factors have
collectively fueled the rising interest in microservices as a modern software
architecture paradigm [7].

Benefits of microservices include [5]: scalability since each microservice can be
scaled independently, enabling cost-effective resource allocation; smaller codebases
are more maintainable, reducing the risk of system-wide disruptions; microservices
are fault-tolerant and can be easily made highly available, as the failure of one service
doesn't necessarily affect the entire application.

At the same time, microservices architecture is complex, as developing and
managing microservices can be complex due to the need for inter-service
communication and infrastructure management; it brings added overhead in terms of
communication, deployment, and monitoring; and introduces additional layers of
communication between services which negatively affects overall system
performance due to network latencies [4].

The Migration Trend: Monoliths to Microservices
In recent years, many organizations have embarked on the journey of migrating

from monoliths to microservices. Several compelling reasons drive this migration
[7][8]:

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 28

1. Scalability: Monoliths often struggle to scale efficiently, as any increase in
load affects the entire application. Microservices allow organizations to scale only the
parts of the application that require additional resources. The entire system can scale
up or down in response to demand changes.

2. Technology diversity: Microservices support a wider range of technologies
for different components of the application. This enables organizations to choose the
best tool for each job, enhancing overall performance.

3. Distributed team autonomy: In a monolithic environment, changes to one part
of the application can affect other components. Microservices promote team
autonomy, as technologically diverse teams can work on separate services with
minimal interference.

4. Faster deployment: Microservices enable independent deployment, allowing
organizations to release updates and new features more rapidly.

5. Resilience: Microservices inherently offer better fault isolation. If one service
fails, it doesn't necessarily lead to the entire application's collapse.

Challenges of Migrating Monoliths to Microservices
While the benefits of microservices are clear, the journey from monoliths to

microservices is fraught with challenges [9]. These challenges encompass both
domain and codebase refactoring, as well as infrastructure and data-related hurdles
[4]. Moreover, the cost of migration, both in terms of time and resources, can be
substantial [10].

Domain and Codebase Refactoring
Refactoring a monolith into microservices requires tearing the application into

smaller bounded contexts that encompass specific business domains. This process
involves identifying boundaries, separating concerns, and establishing clear APIs for
inter-service communication.

These refactoring efforts often face the following common challenges:
● Boundary identification: Determining the right boundaries for microservices

can be complex, and mistakes can lead to overly chatty communication between
services or services that are too tightly coupled.

● Data separation: Monoliths often share a common database. Refactoring
requires separating the often tightly coupled data into distinct databases for each
microservice, which can be intricate for some systems [4].

● API design: Designing clear APIs for microservices is a critical task, as these
APIs serve as a domain separation boundary and enable inter-service communication.

While there is plenty of research on the attempts to automate or semi-automate
monolith decomposition by static code analysis [11] or by analyzing data flow [12],
the prospect remains a daunting one [13].

Infrastructure and Data Challenges
In addition to domain and codebase refactoring, the migration from monolith to

microservices entails addressing infrastructure and data-related challenges [14]:
● Deployment and orchestration: Microservices require robust CI/CD practices

to manage the deployment of multiple services across a distributed environment.
● Data consistency: Maintaining data consistency and ensuring data availability

in a microservices environment is a complex task, particularly when multiple services

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 29

access the same data or when there is a need to implement more complex data
replication or CQRS patterns.

● Monitoring and observability: With the increase in the number of services,
monitoring and troubleshooting become more challenging. Each service needs to be
individually monitored and each service call needs to be traced as it propagates
through a distributed system with varying availability.

● Communication and networking: Microservices rely heavily on network
communication. Designing and managing network traffic and security is vital.

● Infrastructure cost: The distributed nature of microservices can lead to
increased infrastructure costs, as additional resources are required to maintain the
architecture.

The cost of migration should not be underestimated. It encompasses not only the
time and effort required for refactoring but also the effect on organization
communication patterns and potential business disruptions during the migration
process [4].

Modular Monoliths: A Potential Solution
Despite their shortcomings, monoliths remain an attractive architectural choice

for many projects due to their speed of development, shorter time to market,
infrastructure relative simplicity, and performance benefits. Not every greenfield
project should start from microservices. In fact, many falling prey to the trend find
themselves not being able to deliver on time. So, the question to be asked is: what
architecture is the best fit for a greenfield project that needs fast time to market at
first and is very likely to scale exponentially later? Or rather: are there any options
other than painful monolith to microservices migration or unnecessary and expensive
microservices from the start?

One way to alleviate the challenges associated with migrating from monoliths to
microservices is to consider the concept of modular monoliths. A modular monolith
is a monolithic application that is structured in a way where each module already
represents a separate domain or subdomain. This modular structure mimics the
decomposition of a microservices architecture within a monolithic codebase. While
modularizing a monolith is a challenging endeavor [15] it will certainly pay off when
a need to scale arises and the organization decides on migration to microservices. In
this respect, modularizing a monolith from the start can be viewed as earning
architectural credit early on.

A modular monolith brings:
● Fast time to market: Inherent to monolithic architectures ease of development,

simplicity of deployment, and lack of interservice communication overhead mean
that greenfield projects can freely experiment and deliver functionality faster than
with microservices.

● Clear domain boundaries: A well-structured modular monolith already
exhibits distinct domain boundaries, making the transition to microservices more
straightforward.

● Loose coupling: The modular structure reduces interdependencies between
modules, making it easier to extract and deploy them as separate services.

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 30

● Infrastructure simplicity: Modular monolith inherits simplicity of deployment
and required infrastructure from the monolith by the virtue of being a single
deployable artifact.

● Incremental migration: Organizations can gradually migrate modules to
microservices, reducing the disruption and risk associated with a complete migration.

● Performance: Direct method calls within a singular deployment artifact bring
a natural performance optimization as opposed to a distributed system.

However, it's important to note that achieving a well-structured modular
monolith is not a trivial task and requires careful planning and design. A clear
understanding of the business domains and subdomains, along with effective API
design, is crucial for success. Despite structural complexity required from the start,
greenfield projects are likely to adopt a modular monolith approach as part of
addressing the tech debt [16].

The Research Gap
Despite the increasing popularity of microservices and the challenges associated

with migrating from monoliths to microservices, there is a noticeable scarcity of
research in the domain of structuring a monolith to facilitate a smooth transition.
Among the few research attempts in this area, a bachelor's thesis by Tsechelidis
should be noted [17]. The paper proposes to standardize monolith module structure
by leveraging hexagonal architecture as an easy way to control granularity of services
and promote microservice-like domain-centric design of each module [17]. Author
emphasizes on the benefits of infrastructure simplicity but does not extend an
argument for further splitting of such modular monoliths into microservices.

Apart from the lack of scientific research in the area there are conflicting
opinions from the industry voices. Fowler is convinced that “you shouldn't start a
new project with microservices, even if you're sure your application will be big
enough to make it worthwhile” [18]. Newman notes that it is more practical to start
with a monolithic system, warns against the pitfall of introducing unnecessary
complexity overhead, but does not rule out using microservices for greenfield
projects altogether [19]. Tilkov, on the other hand, argues that carving the new
system into pieces should be done as early as possible and going with microservices
first is the right way to achieve that [20].

While industry best practices and case studies provide valuable insights, there is
a need for systematic and scientifically grounded approaches. Research question that
remains unexplored is: what are the best practices for designing modular monoliths
that are more amenable to migration to microservices? What design patterns and
architectural principles should be applied?

Summary and Conclusions
The architectural choices in software development are pivotal, and the transition

from monoliths to microservices is a significant endeavor for many organizations.
While the benefits of microservices are clear, the migration process is challenging,
both in terms of domain and codebase refactoring, as well as infrastructure and data
considerations. The concept of modular monoliths, where each module already
represents a separate domain or subdomain, offers a potential solution to ease this
transition.

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 31

However, it's important to note that the landscape of structuring monoliths for
microservices migration is under-researched. More scientific inquiry and systematic
studies are needed to develop best practices, tools, and frameworks that can guide
organizations in this transition. By closing the research gap, we can make the path
from monoliths to microservices more predictable and efficient. This will allow
organizations to harness advantages of both architectural styles, alleviate the fear of
being “stuck” with the monolith, and enable easier transitions from monoliths to
microservices when the need to scale arises.

References:
1. Newman, S., 2021. Building microservices. O'Reilly Media, Inc.
2. Richards, M., 2022. Software architecture patterns, 2nd edition. O'Reilly

Media, Inc.
3. Google Trends. (n.d.). Explore - Google Trends. Retrieved October 15, 2023.

URL:https://trends.google.com/trends/explore?cat=1227&date=2013-01-
01%202023-10-15&q=microservices,monolith&hl=en

4. Kalske, M., Mäkitalo, N. and Mikkonen, T., 2018. Challenges when moving
from monolith to microservice architecture. In Current Trends in Web Engineering:
ICWE 2017 International Workshops, Liquid Multi-Device Software and EnWoT,
practi-O-web, NLPIT, SoWeMine, Rome, Italy, June 5-8, 2017, Revised Selected
Papers 17 (pp. 32-47). Springer International Publishing.DOI:
https://doi.org/10.1007/978-3-319-74433-9 3

5. Gos, K. and Zabierowski, W., 2020, April. The comparison of microservice
and monolithic architecture. In 2020 IEEE XVIth International Conference on the
Perspective Technologies and Methods in MEMS Design (MEMSTECH) (pp. 150-
153). IEEE. DO: https://doi.org/10.1109/MEMSTECH49584.2020.9109514

6. Pahl, C. and Jamshidi, P., 2016. Microservices: A Systematic Mapping Study.
CLOSER (1), pp.137-146. URL:
https://www.scitepress.org/PublishedPapers/2016/57855/57855.pdf

7. Salah, T., Zemerly, M.J., Yeun, C.Y., Al-Qutayri, M. and Al-Hammadi, Y.,
2016, December. The evolution of distributed systems towards microservices
architecture. In 2016 11th International Conference for Internet Technology and
Secured Transactions (ICITST) (pp. 318-325). IEEE. DOI:
https://doi.org/10.1109/ICITST.2016.7856721

8. Fritzsch, J., Bogner, J., Haug, M., Wagner, S. and Zimmermann, A., 2022.
Towards an architecture-centric methodology for migrating to microservices. arXiv
preprint arXiv:2207.00507. DOI: https://doi.org/10.48550/arXiv.2207.00507

9. Razzaq, A. and Ghayyur, S.A., 2023. A systematic mapping study: The new
age of software architecture from monolithic to microservice architecture—
awareness and challenges. Computer Applications in Engineering Education, 31(2),
pp.421-451. DOI: https://doi.org/10.1002/cae.22586

10. Faustino, D., Gonçalves, N., Portela, M. and Silva, A.R., 2022. Stepwise
migration of a monolith to a microservices architecture: Performance and migration
effort evaluation. arXiv preprint arXiv:2201.07226. DOI:
https://doi.org/10.48550/arXiv.2201.07226

https://trends.google.com/trends/explore?cat=1227&date=2013-01-01%202023-10-15&q=microservices,monolith&hl=en
https://trends.google.com/trends/explore?cat=1227&date=2013-01-01%202023-10-15&q=microservices,monolith&hl=en
https://doi.org/10.1007/978-3-319-74433-9_3
https://doi.org/10.1109/MEMSTECH49584.2020.9109514
https://www.scitepress.org/PublishedPapers/2016/57855/57855.pdf
https://doi.org/10.1109/ICITST.2016.7856721
https://doi.org/10.48550/arXiv.2207.00507
https://doi.org/10.1002/cae.22586
https://doi.org/10.48550/arXiv.2201.07226

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 32

11. Gouigoux, J.P. and Tamzalit, D., 2017, April. From monolith to
microservices: Lessons learned on an industrial migration to a web oriented
architecture. In 2017 IEEE international conference on software architecture
workshops (ICSAW) (pp. 62-65). IEEE. DOI:
https://doi.org/10.1109/ICSAW.2017.35

12. Chen, R., Li, S. and Li, Z., 2017, December. From monolith to
microservices: A dataflow-driven approach. In 2017 24th Asia-Pacific Software
Engineering Conference (APSEC) (pp. 466-475). IEEE. DOI:
https://doi.org/10.1109/APSEC.2017.53

13. Seedat, M., Abbas, Q. and Ahmad, N., 2023. Systematic Mapping of
Monolithic Applications to Microservices Architecture. arXiv preprint
arXiv:2309.03796. DOI: https://doi.org/10.48550/arXiv.2309.03796

14. Velepucha, V. and Flores, P., 2023. A survey on microservices architecture:
Principles, patterns and migration challenges. IEEE Access. DOI:
https://doi.org/10.1109/ACCESS.2023.3305687

15. Gonçalves, N., Faustino, D., Silva, A.R. and Portela, M., 2021, March.
Monolith modularization towards microservices: Refactoring and performance trade-
offs. In 2021 IEEE 18th International Conference on Software Architecture
Companion (ICSA-C) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/ICSA-
C52384.2021.00015

16. Cico, O., Souza, R., Jaccheri, L., Nguyen Duc, A. and Machado, I., 2021.
Startups transitioning from early to growth phase-a pilot study of technical debt
perception. In Software Business: 11th International Conference, ICSOB 2020,
Karlskrona, Sweden, November 16–18, 2020, Proceedings 11 (pp. 102-117). Springer
International Publishing. DOI: https://doi.org/10.1007/978-3-030-67292-8 8

17. Tsechelidis, M., 2023. Developing distributed systems with modular
monoliths and microservices. URL: http://dspace.lib.uom.gr/handle/2159/29357

18. Fowler, M. (2015). MonolithFirst. Retrieved October 15, 2023. URL:
https://www.martinfowler.com/bliki/MonolithFirst.html

19. Newman, S. (2015). Microservices for Greenfield? Retrieved October 15,
2023. URL: https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/

20. Tilkov, S. (2015). Don’t start with a monolith when your goal is
microservices architecture. Retrieved October 15, 2023. URL:
https://www.martinfowler.com/articles/dont-start-monolith.html

Article sent: 19.10.2023
© 2023 Authors

https://doi.org/10.1109/ICSAW.2017.35
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.48550/arXiv.2309.03796
https://doi.org/10.1109/ACCESS.2023.3305687
https://doi.org/10.1109/ICSA-C52384.2021.00015
https://doi.org/10.1109/ICSA-C52384.2021.00015
https://doi.org/10.1007/978-3-030-67292-8_8
http://dspace.lib.uom.gr/handle/2159/29357
https://www.martinfowler.com/bliki/MonolithFirst.html
https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/
https://www.martinfowler.com/articles/dont-start-monolith.html

