
 

 Modern engineering and innovative technologies                                                                    Issue 34 / Part 1 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 78 

http://www.moderntechno.de/index.php/meit/article/view/meit34-00-001 
DOI: 10.30890/2567-5273.2024-34-00-001 

UDC537.87:537.5:621.385 
ELECTROMAGNENIC FIELD FOR A SYSTEM OF NONRELATIVIVISTIC 

CHARGES AT FAR DISTANCES  
ЕЛЕКТРОМАГНІТНЕ ПОЛЕ ДЛЯ СИСТЕМИ НЕРЕЛЯТИВІСТСЬКИХ ЗАРЯДІВ НА 

ДАЛЕКИХ ВІДСТАНЯХ 
Prijmenko S.D. / Прийменко С.Д. 

c.p.-m.s., senior researcher. / к.ф.-м.н., ст.н.сп. 
ORCID: 0009-0005-3646-1954 

National Science Center Kharkiv Institute of Physics and Technology of the NASU,  
Kharkiv, Akademichna 1, 61108 

Національний Науковий Центр Харківський Фізико-Технічний Інститут НАНУ,  
м.Харків Академічна 1, 61108. 

Lukin K.O. / Лукін К. О. 
d.p.-m.s., prof. / д.ф.-м.н., проф. 

ORCID: 0000-0001-9998-9207 
O.Ya. Usikov Institute for Radiophysics and Electronis of the NASU,  

Kharkiv, acad. Proscura 12, ,61085, 
Інститут Радіофізики і Електроніки ім.О,Я.Усікова, НАНУ,  

м.Харків, акад.Проскуры 12, 61085 
 

Abstract In a nonstationary system of nonrelativistic charges, a change in the dipole moment 
of the whole system forms a dipole radiation, and a change of the monopole moment or total charge 
of the system creates at large distances a potential component of the electric field strength inversely 

proportional to the first degree of distance 0( , )pE R tψ



.  
The source of the potential electric field at far distances or in the wave zone is a 

nonstationary potential energy. It's determined by the distance between charges or by the density of 
charges. The density of charges is the monopole moment of a unit volume, the change of which in 

time creates the strength of the potential electric field at far distances. The Eq. 0( , )pE R tψ



 is a wave 
process that propagates at a finite velocity. This leads to a retardation effect responsible for the 

creation of a potential electric field in the wave zone. TheEq. 0( , )pE R tψ



is a solution to the 
Dalembert wave equation, which includes explicit and implicit distance dependences. The latter 
determines the retardation effect. 

Using asymptotic expressions describing the retardation  scalar and vector potentials of the 
system of nonrelativistic charges, the expansions on a small parameter of the electromagnetic field 
strengths in the form of retardation solutions are obtained, in which the retardation on the system 
size can be neglected in comparison with the retardation in the wave zone and the characteristic 
time of change of the charge and current densities of the system.  

The assumption is used that at far distances the derivatives on the spatial variables between 
the source and observation points can be replaced by the derivatives on the spatial variables 
between the origin and the observation point. The electric and magnetic field strengths are obtained 
in space-time and space-frequency representations. 

The retarded scalar and vector potentials determine the potential and dynamic components of 
electric energy, respectively, for unit charge and current densities at the observation point. 
Similarly, the potential and dynamical electric field strengths determine the force actions of the 
potential and dynamical actions, respectively, on the unit charge and current densities at the 
observation point. 

Keywords: the accelerating potential electric field, nonstationarymonopole moment, electric  
dipole moment, nonstationary electrodynamics, retarded scalar and vector potentials, electric 
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displacement vector, displacement current, potential electric field strength ,wave zone, asymptotic 
expansion, small parameter, nonstationary charge density, charge density or monopole moment of 
unit volume, the characteristic time of change of the charge and current densities, antisymmetric 
current density.  

1.Introduction 
In the physics of charged particle beams, of essential importance are the 

collective effects. They manifest themselves through macroscopic quantities such as 
the charge density ( , )r tρ



 and the current density ( , )j r t




 . 
The electromagnetic field sources ( , )r tρ



 and ( , )j r t




 under consideration are 
distributed in the finite space region of volume V . The charge density for a charge 
element de   occupying a volume  dV  is defined by the formula ( , )de r t dV= ρ ⋅



, 
where dV  is a physically small volume, i.e., the volume, which is small, compared to 
the volume of the system, but is large as compared to the individual point charges in 
the form of electrons and ions.  

    The space-time variation of the dipole moment 1( , )K r t  of the charge system 
has been the subject of a large number of publications, while the number of 
publications dealing with changes in the monopole moment  of the charge 
system 0 ( , )K r t , is very limited.. The monopole moment of the charge system is 
understood as the total charge of the system [1]. The retardation potentials, generated 
by the sources ( , )r tρ



 and ( , )j r t




, have been derived in [2] for the whole unlimited 
space.  

In the monopole and dipole approximations the potentials for the system of 
nonrelativistic charges at far distances are obtained in [3]. In neglecting the 
retardation on the size of the system in the monopole approximation the scalar 
potential is found in [3] The latter is the zero approximation. The scalar and vector 
potentials in the dipole approximation are the first and zero approximations. The last 
pair satisfies the Lorentz gauge and forms the dipole radiation. 

The existence of the potential electric field strength component, being inversely 
proportional to the first degree distance, was apparently first established in [4] 
(p.236-237). It was noted that reason for the occurrence of that sort of dependence 
resided in the retardation effect. At the harmonic time dependence, this component of 
the potential electric field is directed along the wave vector.  

The potential electric field strength component, inversely proportional to the 
first degree of the distance between the source and the observation points at arbitrary 
distances, has been found in [5]. It is directed along the radius, describes an unsteady 
wave process in the general case, and is caused by charge density variations with time 
in the source region. This component accounts for the retardation effect at each point 
of the source. The spatial singularity is under the sign of the integral. 

For a volume source, the potential component of the electric potential field 
strength, inversely proportional to the first degree of distance and directed along the 
radius drawn from the source point to the observation point, has been derived in [6] 
(Eq. 4.36).  It was caused by the change of the volume charge density with time in the 
source region. 

Furthermore, for a surface source, the unsteady scattered potential electric field 
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strength, which is inversely proportional to the first degree of distance and is directed 
along the radius drawn from the source point to the observation point, has been also 
obtained in [6] (Eq. 4.42).  It was due to the change of the surface charge density with 
time in the source region. 

   As a single electron moving along the normal to a perfectly conducting half-
space stops abruptly, there arises the transient radiation comprising a longitudinal 
component of the electric field strength [7]. The longitudinal component is directed 
along the radius in the spherical coordinate system. The model of transient slowing-
down radiation with application of the method of images was used. 

2. Electromagnetic field 
2.1. Retardation potentials 

2.1.1 Space and time representation 
Let us consider the electromagnetic field of a system of the nonrelativistic 

charges at distances large compared to the dimensions of the system. We put the 
origin - point O - inside the system (Figure1). In the figure, a point O′  is a source 
point; a point P is an observation point; a vector r is a radius vector drawn from the 
origin to the source point; a vector 0R



 is a radius vector drawn from the origin to the 
observation point,  0R



   is a constant; a vector R


 is a vector drawn from the source 
point to the observation point; an angle ϕ  is the angle between the vectors r



 and 0R


 
In the approximation of far distances it can be written that 

 

2

0 2
0 0

0 0

0

1 2 cos

11 2 ( ) ( )

r rR R r
R R

R r n R n r
R

= − = − ϕ + ≈

≈ − ⋅ ≈ − ⋅

 



   

,                                           (1) 

 
0R Rt

c c
= τ + ≈ τ + −

( )n r
c
⋅
 

,                                                 (2) 
where 

 0r R ,                                              (3) 

 0 0n R R=




,                                                 (4) 

 { }, ,r x y z=


,                                                      (5) 

 { }0 0 0 0, ,R x y z=


.                                                    (6) 
 

Taking into account Eq.(2), the charge and current densities can be written as 

 
0

( )( , ) ( , )n rr r t R с
c
⋅

ρ τ ≈ ρ − +
 

 

,                                         (7) 

 
0

( )( , ) ( , )n rj r j r t R с
c
⋅

τ ≈ − +
 

 

 

,                                        (8) 
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Figure1. Spatial coordinates in the source region and observation region. 
 
In the asymptotic approximation at constant 0R , by virtue of the retardation effect 

the charge and current densities, being the functions depend on the  spatial , ,x y z  and 
time τ  coordinates in the source region transform  into the functions of the spatial 
coordinates , ,x y z  in the source region and the time coordinate t  at the observation  
point. 

When decomposing by a small parameter 

 

( )n r
c
⋅

η =
 

                                            (9) 
asymptotic expressions for the charge and current densities in the right parts Eq.(7) 
andEq. (8) we obtain 

 

2
2

0 2
( , ) ( , ) ..,r t r t R с

t t
∂ρ ∂ ρ

ρ ≈ ρ − + η+ η +
∂ ∂

 

                        (10) 

 

2
2

0 2
( , ) ( , ) ...j jj r t j r t R с

t t
∂ ∂

≈ − + η+ η +
∂ ∂

 

 

 

                         (11) 
The smallness parameter is a dimensional quantity equal to the retardation on 

the size of the nonrelativistic charge system. 
An important quantity. requiring consideration at asymptotic decomposition, is 

the characteristic time of change of charge and current densities [3] 

 

max

e

r
v

τ
,                                (12) 

where maxr   is the maximum system size and  ev  is charge velocity, respectively. In 
this case 

 e

c
v

τ
η


      ,                             (13) 
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i.e. for the system of nonrelativistic charges the characteristic time of change of 
charge and current densities essentially exceeds the retardation on the system size. 

Taking into account Eq. (10) and Eq. (11) we find asymptotic expressions of 
retarded scalar and vector potentials for the system of nonrelativistic charges at far 
distances in the form of expansion by a small parameter 

0

( )
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0 0

0

( )0

1( , ) { ( , )}
4

1 ( ){ }
4

RV n rt
c c

V R n rt
c c
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n rdV
R c
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⋅
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∫

∫
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πε
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+ ⋅ +

πε ∂τ

 

 


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                 (15)  
In the first terms of the expansion in Eq.(14) and Eq.(15) we have neglected the 

retardation on the size of the system. 
The first term in the expression for 0( , )R tψ  is the total charge of the system ( )Q t  

divided by the distance to the observation point. 

 
0 0 0 0 0

( )0
( , ) (1 ){ ( , , )} ( ) .

RV n rt
c c

R t R dV r t R с r Q t R
⋅

τ≈ − +

∫ψ ≈ ρ − =
 

 (16) 
The second term in Eq.(14) 1 0( , )t Rψ  is the scalar potential in the first or dipole 

approximation [3]. 
At far distances from the charge system 

 0r R                                (17) 
and according to Eq. (14) 

 1 0 0 0( , ) ( , )R t R tψ ψ                                             (18) 
In an electrically charged system at far distances, the monopole moment makes 

a determining contribution to the scalar potential. The dipole moment and higher 
order moments can be neglected. 
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2.1.2 Space-frequency representation 
The space-frequency representation of the retarded potentials is obtained using 

the Fourier transformation.   
In the asymptotic approximation, the spectral component of the scalar potential 

over the observation time t  [8], in view of Eq. (14), has the form 

 

0 0
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0 0

2 2

2 2
0 0

1( ; ) ( )
4
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4

1 1 ( ) ...
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 

 

               (19) 
Let us first integrate over the retardation time τ . We reduce the Fourier 

transformation at the observation time t  to the Fourier transform at the retardation 
time τ  [8]. 

We multiply and divide the first term in Eq.(19) by 
[ ]0R

i
ce

− ω

 ,  and the other terms  

are multiplied and divided by 
( )[ ]0R n ri

c ce
⋅

− ω −
 
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(20) 
The Eq. (20) can be rewritten as 
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 

(21) 
where 

 0 0( )t R сτ = −  ,                                      (22) 
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0 ( )( )R n rt

c c
⋅

τ = − +
 

.                                           (23) 
Thus 0τ  andτ  denote the retardation  time for the cases with neglecting and with 

taking into account, respectively,  the retardation on the size of the charge system. 
The Equation (21) takes the form 
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where 
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.                                     (26) 
is the Fourier image of the charge density of the system, and 

 
( ) ( , )               

V
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                         (27) 
is the spectral density of the monopole moment or the total charge of the system 
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describes the spectral density of the scalar potential in the form of the amplitude of a 
harmonic divergent spherical wave. The harmonic wave is produced by the spectral 
density of the effective charge ( )Q ω  located at the origin of coordinates. The 
expression 0 0( ; )t Rψ ω  does not take into account the phase change on the spatial 
inhomogeneity. We obtain the harmonic wave by means of multiplying Eq.(28)  by 

i te− ω  ,  
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With consideration for Eq. (11) in the asymptotic approximation, the spectral 
component of the vector potential over the observation time t  [8] is obtained similarly 
to Eq. (21): 

 

0 2
0 0

( )[ ]

2
0 0

0

0

1( , ) ( , )
4

1 ( ) ..
4

R
it c

V

R n ri ic c

V

A R e dV j r
c R

j n rdV e d e
c R t c

ω

⋅ +∞ω − ωτ

−∞

∫

∫ ∫

ω ≈ ⋅ ω +
π ε

∂ ∂τ ⋅
⋅ τ ⋅ ⋅ ⋅ +

π ε ∂τ ∂

 







 

                       (30) 
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where 
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                                  (32) 
is Fourier image of the current density of the system, and  
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V
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



                                           (33) 
is the spectral density of the effective current of the system. 

The first summand in Eq. (31 
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in the zero approximation describes the spectral density of the vector potential as the 
amplitude of a harmonic divergent spherical wave. The harmonic wave is created by 
the spectral density of the effective current ( )J ω



 located at the origin.  We obtain the 
harmonic wave by multiplying i te− ω bythe Eq.  (31). 
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The expression 0 0( ; )A Rω


 does not account for phase runup on spatial 
inhomogeneity. 

2.2. Electromagnetic field strengths 
2.2.1.Space and time representation 

In the zero-point approximation, the electric 0( , )E R t
 

 and magnetic 0( , )H R t
 

 field 

strengths are dependent on the retarded scalar 0( , )R tψ


 and vector 0( , )A R t


  potentials, and 
are determined by the relations [9] ] (p.432) 

 00 0 0 0 0 0 0 0 0( , , ; ) ( , , ; ) ( , , ; )RE x y z t grad x y z t A x y z t
t
∂

= − ψ −
∂



,                         (36)
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00 0 0 0 0 0

0

1( , , ; ) ( , , ; )RH x y z t rot A x y z t=
µ



 .(37) 
In Eq. (36) the term 
 

 00 0 0 0 0 0( , , ; ) ( , , ; )p
RE x y z t grad x y z t= − ψ



    (38) 
is the potential component of the electric field strength, and the term 
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t

∂
= −

∂





                                     (39) 
is the dynamic component of the electric field strength. 

Up to order terms 
2

0

( )r
R , taking into account Eqs. (14), (38), we have for   

 0 00 0 0 0 0 0 0 0 0 0( , , ; ) ( , , ; ) ( , , ; )p
R RE x y z t grad x y z t grad x y z t= − ψ ≈ − ψ



                (40) 
In an electrically charged system at far distances, the spatial derivative of the 

monopole moment makes a determining contribution to the potential component of 
the electric field strength. The derivative of the dipolemoment and moments of higher 
orders can be neglected. 

With precision to terms proportional to 
2
01 R  

 

0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

0 0

0 0 0

( , , ; ) ( , , ; )

( , , ; ) ( , , ; )

1 ( ){ } ...

R

RV
t

c

grad x y z t x y z t i
x

x y z t j x y z t k
y z

dV dxdydzi
R x τ≈ −

∫

∂
− ψ = − ψ −

∂
∂ ∂
ψ − ψ ≈

∂ ∂
∂ρ τ ∂τ

≈ − ⋅ +
∂τ ∂









                    (41) 
In this case 

   

0R r
t

c

−
− τ =





       (42) 
In the asymptotic approximation 

 
0

( )n rt R с
c
⋅

τ ≈ − +
 

                                               (43)  
With accuracy up to the terms proportional to 0x R  we have   

 
0 0

0 0

0 0 0

1 1 1 2 1 cos( , )
2

R x x R
x c x c R c
∂τ ∂

≈ − ≈ − ≈ −
∂ ∂





                        (44) 
Taking into account Eqs.(44), (41) lead to the following expression 
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c c
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⋅
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⋅
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∫
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∂ρ τ
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 

 



 





 
 

 






0 ( )0

; )) ( )} R n rtV c c

r n R dV
⋅

τ≈ − +
∫ ⋅ ≈

∂τ
 







  

 
0 0 0 0 0 ( )0

( ; ))( , , ) 4 { } ,R n rtV c c

rn x y z cR dV
⋅

τ≈ − +
∫
∂ρ τ

≈ πε
∂τ

 





          (45) 

where 0 0 0( , , )n x y z

 is the unit vector along the radius  vector 0R


, and  0 0 0, ,i j k


 

  are the unit 
vectors along the Ox, Oy, Oz axes, respectively.  

The formula (45) with the accuracy up to the proportional terms  2
01 R   

determines at far distances or in the wave zone the potential component of the electric 
field strength, defined by the scalar potential.  

 According to Eqs. (14), (16) and (45), the scalar potential 0( , )R tψ   and the 

potential component of the electric field strength 0( , )pE R tψ



 in the wave zone are 
inversely proportional to the first degree of the distance from the source to the 
observation point. 

In this case, 0( , )R tψ  in the wave zone is determined by the change of the 
electric monopole moment 0 ( )K τ , equal (within the allocated source volume V )  to 
the charge at the retarded moment of time τ  .  

 0 ( ) ( , ) ( , , ; )
V

K Q V x y z dV∫τ = τ = ρ τ                                 (46), 

And 0( , )pE R tψ



in the wave zone is caused by the change in the time derivative of 

the electric monopole moment  
0 ( )K∂ τ
∂τ , equal (within the allocated source volume 

V ) to the velocity of change for the charge 
( , )Q V∂ τ
∂τ  at the retarded moment of time  

τ  

 
0 ( ) ( , , ; ) .

V

K x y z dV∫
∂ τ ∂ρ τ

=
∂τ ∂τ                                      (47) 

or 

 

0 ( ) ( , , ; ) .
V

K divj x y z dV∫
∂ τ

= − τ ⋅
∂τ



                                  (48) 
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The derivative 
0 ( )K∂ τ
∂τ   can also be represented as a flux of charge through a 

closed surface S   bounding  the given volume  V  

 
0 ( ) ( ( ; ) )

S

K j r dS∫
∂ τ

= − τ ⋅
∂τ









                                          (49) 

The potential component of the electric field strength  0( , )pE R tψ



  in the wave 
zone is directed along the normal drawn from the origin of coordinates in the source 
region to the observation point, and its distribution is isotropic. In the SI system, it 
corresponds to the second summand in (6.55) [5] at large 0R values. 

Taking into account the expression (15) for the vector potential   0( , )A R t


, we 
obtain 

 

0 0 0 0 0
2

0 0

( , , )0

( , ( , , )) 1 ( ( , ; )){
4

}

V

R r x y z
t

c

A t R x y z j t r R
t c R

dxdydz
t −

τ= −

∫
∂ ∂ τ

− = − ⋅
∂ π ε ∂τ

∂τ
⋅
∂





 




          (50) 
According to Eq.(2),    

 

1 ,1[1 ( ( ))]t n v r
c

∂τ
≈

∂ − ⋅
  

                                            (51) 
where  ( )v r   is the velocity of the moving charge at the point ( )O r′     . 

According to Eqs.(50), (51),  we obtain 

 

0 2
0 0

0 0

0

( 1)( , )
4

( . ( , ; )) 1{ }1[1 ( ( , , ))]

r
A

V

R
t

c

E R t dxdydz
c R

j R t r R

n v x y z
c

τ≈ −

∫
−

≈ ⋅
π ε

∂ τ
⋅

∂τ − ⋅





 

                     (52) 
The   formula (52) defines the dynamic component of the electric field strength  

0( , )r
AE R t


 in the wave zone. It is proportional to the second derivative with respect to 
the retarded time from the dipole moment of the selected volume V  in the source 
region, is directed along this derivative, and is inversely proportional to the 
retardation factor.  

The dynamic component of the electric field strength 0( , )r
AE R t


 in the wave zone 
corresponds to the third summand in (6.55) [5] at large 0R  . 

Combining Eq.(45) and Eq. (52), we obtain the asymptotic expression for the 

resulting electric field strength , 0( )AE R ,tψ



  of the system of nonrelativistic charges in 
vacuum at far distances or in the wave zone:  
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4

( ( , ; )) 1{ }1[1 ( ( ))]

p r
A A

RV t
c

RV t
c

E R t E R t E R t n R cR

r dV
c R

j t r R dV
n v r

c

ψ ψ

τ≈ −

τ≈ −

= + ≈ πε

∂ρ τ
− ⋅∫

∂τ π ε

∂ τ
⋅∫

∂τ − ⋅

  





 

           (53) 
In relation (53), we neglected the retardation on the size of the system of 

nonrelativistic charges in comparison with the retardation between the system and the 
observation point. 

The potential component of the electric field strength  0( , )pE R tψ



 in the wave 
zone is directed along the normal drawn from the origin of coordinates in the source 
region to the observation point, and its distribution is isotropic. In the SI system, it 
corresponds to the second summand in (6.55) [5] at large 0R  . 

For the system of nonrelativistic charges in vacuum at far distances or in the 
wave zone, the electric field strength has a monopole-dipole character and consists of 
potential and dynamic components. 

 The magnetic field strength, according to Eq.(37) and Eq. (15) with an accuracy 

of up to the terms proportional to 
2
01 R  has the form  

 

0 0 0

0
00 0 0 0

1( , ) { }
4 R rV

t
c

x y z

i j k

H R t dV
R x y z

j j j

−
τ= −

∫
∂ ∂ ∂

= ≈
π ∂ ∂ ∂







 

 

             (54) 
 
Similar to Eq.(44), we have 

 
0 0

0

1 cos( , )y R
y c
∂τ

≈ −
∂





,                                          (55) 

 
0 0

0

1 cos( , )z R
z c
∂τ

≈ −
∂





.                                          (56).  
Taking into account Eqs. (54) - (56), (44), we have 
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0 0
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











               (57). 
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x
y
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z

jH R t R c dV z R

j x R

∫
∂ τ
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
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                   (59). 
According to Eqs.(57)-(59) the magnetic field strength for a system of 

nonrelativistic charges in vacuum at far distances or in the wave zone is proportional 
to the second derivative on retarded time of the dipole moment of the source 

The magnetic displacement vector is written in the form 

 

0
0 0 0 0

00

( , )( , ) { ( , , )}
4 R rV

t
c

j rB R t dV n x y z
R c −

τ= −

∫
µ ∂ τ

≈ ×
π ∂τ







 



              (60) 
The magnetic displacement vector in the wave zone corresponds to the second 

summand in (6.56) [5] at large 0R


. 
It follows from an equations (53) and (54) that the scalar multiplication of the 

vectors , 0( , )AE R tψ



 and 0( , )H R t


 is equal to zero. The vectors of the resulting electric 
field strength and magnetic field strength are mutually orthogonal at large distances. 

2.2.2 Space frequency representation  
We obtain the space-frequency representation of the electromagnetic field 

strength in terms of harmonically divergent spherical waves, using the space-
frequency representation in the form of a harmonically divergent spherical wave of 
the scalar (Eq. (29)) and vector (Eq. (35)) potentials   According to Eqs. (45), (29), 
we obtain 

0 00 0 0

0 0

[ ]
[ ]

0 0

0
0

1( , ; ) ( , ; ) [
4

( )( )] ( ) ,
4

t
R R

R
i tR c

i t
c

E R t grad R t grad
R

i e Qe Q k
R

ψ

ω −
ω −

ω ≈ − ψ ω ≈ − ⋅
πε

⋅ ω
⋅ ω ≈ − ⋅ ω

πε





          (61) 
where 

 

{ }
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( ) ( ), ( ), ( )
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x y zk k k k

x R y R z R
c c c

n R
c

ω = ω ω ω =

ω ω ω = = 
 
ω

=



  

  





                (62) 
is the wave vector along the normal line. 

According to the space-frequency representation, Eq. (61) in the zero-point 
approximation defines the potential component of the electric field strength in the 
form of a harmonic divergent spherical wave in the wave zone. The harmonic wave 
amplitude is proportional to the spectral density of the total charge of the system or 
its monopole moment. The potential component is directed along the wave vector, 
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i.e., the vectors 0( , ; )tE R tψ ω


   and  ( )k ω


 are parallel 
According to equations (35), (39), we have 

 

[ ]

0 2
0 0

0

( , ; ) ( )
4

R
i tt c

A

iE R t e J
c R

ω −ω
ω ≈ ω

π ε
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                        (63) 
An equation (63) defines the dynamic component of the electric field strength in 

the space-frequency representation in the form of a harmonic divergent spherical 

wave in the wave zone. The angle between the vectors 0( , ; )t
AE R tω


  and ( )k ω


  is 

equal to the angle between the vectors ( )J ω


  and  ( )k ω


 . 
Combining equations (61) and (63), we obtain the resultant electric field 

strength in the space-frequency representation as a sum of two harmonic divergent 
spherical waves in the wave zone 

, 0 0 0( , ; ) ( , ; ) ( , ; )t pt rt
A AE R t E R t E R tψ ψω = ω + ω ≈

  
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R c R
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≈ − ⋅ ω + ω
πε π ε




                    (64) 
According to equations (35), (37), we obtain 
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 

             (65) 
An equation (65) describes the magnetic field strength in the space-frequency 

representation in the wave zone as a harmonic divergent spherical wave. 
3. CONCLUSIONS 
It is shown that the system of nonrelativistic charges in vacuum at distances 

considerably exceeding its own dimensions forms a potential component of the vector 
potential.  

It is also shown that the system of the nonrelativistic charges in vacuum at 
distances considerably exceeding its own dimensions forms a potential component of 
the electric field strength, inversely proportional to the first degree of the distance 
between the source and observation points. 

Due to the nonstationarity of the system of non-relativistic charges, a chain 
arises: time variation of the monopole moment; free charge flux; displacement 
current. 

Decompositions on a small parameter of electromagnetic field strengths in the 
space-time representation in the form of retarded solutions in which the charge 
density and current density change slowly during the time of propagation of the 
electromagnetic field along the system of charges are obtained. 

The potential electric field strength at large distances is proportional to the 
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derivative of the monopole moment or the charge flux through the boundary closed 
surface at the retarded moment of time. 

When in the system of non-relativistic charges moving in vacuum, the distances 
between the charges change, the system forms the potential component of the electric 
field strength, inversely proportional to the first degree of аt fаr distances. 

The potential component of the electric field strength consists of two terms. The 
first and second terms are proportional to the gradient of the scalar potential and the 
time derivative for the potential part of the vector potential, respectively. 

For the system of nonrelativistic charges in vacuum at far distances or in the 
wave zone, the electric field strength has a monopole-dipole character and consists of 
potential and dynamic components. 

The asymptotic representation for the electromagnetic field strength is obtained 
in the form of a small-parameter expansion. The zero approximation describes in 
general the nonstationary wave process, neglecting the retardation on the system size.   

The reason for this phenomenon is local: change of the charge density or 
antisymmetric component of the current density, and integral: change of the 
monopole momentum for the system of moving charges. 

The strength of the potential electric field at large distances is proportional to the 
derivative of the monopole moment or the flux of charge through the boundary closed 
surface at the retarded moment of time. 

In an nonstationary electrically charged system at large distances, the spatial 
derivative of the monopole moment makes a determining contribution to the potential 
component of the electric field strength. The derivative of the dipole moment and 
higher order moments can be neglected. 

The spatial singularity between the source and observation points is taken out 
from under the sign of the integral. 

The presence at large distances of a potential component comparable to the 
rotational component of the electric field strength is determined by the retardation 
effect. There is a connection between events or spatial and ttime coordinates at the 
source and observation points. 

At distances comparable to the size of the charge system, there is a potential 
component of the electric field strength inversely proportional to the second degree of 
the distance between the source and observation 

For the system of nonrelativistic charges in vacuum at far distances or in the 
wave zone, the electric field strength has a monopole-dipole character and consists of 
potential and dynamic components. 
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