Modern engineering and innovative technologies Issue 34 / Part 1 (\GI&

http://www.moderntechno.de/index.php/meit/article/view/meit34-00-049
DOI: 10.30890/2567-5273.2024-34-00-049

UDC 004.2

DISTRIBUTED SYSTEM BASED ON CLOUD SERVICES
PO3NOJAIVIEHA CUCTEMA HA OCHOBI XMAPHUX CEPBICIB

Smetanenko A.V./ Cmeranenko A.B.

bachelor / baxanaep

ORCID: 0009-0002-8224-4086

Kulakovska L.V. / Kynakoscbka 1.B.

c.f.m.s., as.prof. / K.¢p.m.nH., ooy.

ORCID: 0000-0002-8432-1850

Petro Mohyla Black Sea National University, Mykolayiv, UA

Yoprnomopcovkuii HayionanvHuti yHieepcumem imeni [lempa Moeunu, v Mukonais, Ykpaina

Abstract. The paper considers a distributed system for managing a user's library of books,
which consists of four services that work in a single ecosystem but are implemented as
microservices. This system has been successfully deployed on AWS using the relevant services of
the cloud platform. Based on this project, approaches to implementing distributed systems can be
explored. The developed system demonstrates how microservices can be integrated into a single
backend service running on the AWS cloud platform. This ensures high reliability, scalability and
security, and allows for flexible adaptation to the changing needs of users and organizations.

Keywords: distribution system, AWS, Node.js, Bun, TypeScipt, Fastify, Elysiajs, Docker,
Makefile, JWT.

Introduction.

Cloud providers such as AWS offer a wide range of services, including
computing, storage, databases, analytics, machine learning, and security tools. This
allows organizations to easily integrate different services and create end-to-end
solutions that meet their specific needs.

Cloud technologies also help to improve the reliability and security of
information systems. They provide a high level of fault tolerance due to
geographically distributed infrastructure, which minimizes the risks of downtime and
data loss. In addition, cloud providers offer powerful security monitoring and
management tools to help protect data from unauthorized access. Thus, cloud
technologies are an integral part of the modern IT environment, allowing
organizations to improve the efficiency of their business processes, ensure the
reliability and security of information systems, and quickly adapt to changing market
requirements.

Types of distributed systems [1]:

- client-server systems: these systems have one or more servers that provide
resources and services to clients. Clients send requests to the servers and receive
appropriate responses. This architecture allows for centralized resource management,
but has limitations on scalability due to possible server overload;

- Peer-to-peer systems: all participants have equal rights and can act as both
clients and servers. This provides high flexibility and scalability, as each new
participant adds resources to the system. Such systems are used for file sharing and
decentralized computing;

- cloud computing: provides access to resources and services via the Internet
using remote servers. Users can rent computing power and data storage as needed.

ISSN 2567-5273 114 www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1

This helps to reduce IT infrastructure costs and provide flexible scaling. Examples of
cloud platforms include AWS, Google Cloud, and Microsoft Azure;

- Grid computing: combines the resources of many computers to solve large-
scale problems. They are used for scientific research, big data analysis, and other
computationally intensive tasks. Grid systems allow you to distribute computing
among many nodes, which significantly increases performance;

- distributed databases: store data on different physical locations but operate as
a single database. This ensures high data availability and fault tolerance. Users can
access data from different locations without losing performance.

Distributed systems are fundamentally different from the traditional approach to
computing and data processing based on centralized systems. The main difference
between these approaches lies in the architecture. In centralized systems, all
computing resources, data and software are located on one central server or group of
servers. Users interact with the system through client devices, which act as a
terminal.

Main text

The goal of building this system was to create a distributed architecture
consisting of three separate microservices that interact with each other through
different protocols. Each microservice is responsible for a specific part of the
system's functionality, which ensures flexibility, scalability and reliability.

The first service, the authorization service, is responsible for authenticating and
authorizing users. It is private, meaning that it is available only to other microservices
in the system and is not open to external requests. This service is built on the Factify
framework and uses Node.js as a runtime. The Fast-jwt library is used to work with
JWT tokens. Communication with this service takes place via the usual HTTP
protocol. The main functions of the authorization service include processing requests
for registration and login, generating and verifying JWT tokens, and managing user
sessions. High request processing speed is achieved through asynchronous execution
and Factify optimizations. The service provides secure storage and verification of
tokens, as well as easy integration with other services thanks to the HTTP protocol.

The second service, the user management service, is responsible for managing
user information. It uses the authorization service to check user authentication. This
service 1is built on the Elysiajs framework and uses Node.js as a runtime. The Drizzle
ORM is used to work with the database, and the Zod library is used for data
validation. Communication with the authorization service takes place via HTTP. The
main functions of the service include processing requests for creating, editing, and
deleting user profiles, validating and processing user data, and interacting with the
database to store information about users. High performance is achieved thanks to the
lightweight and fast Elysiajs framework. The service provides reliable data validation
using Zod and integration with an authorization service to ensure security.

The third service, the book management service, is responsible for managing
information about books. It uses the authorization service to verify authentication and
the user management service to retrieve user information. This service is built on top
of the framework and uses Bun as a runtime. Drizzle ORM is used to work with the
database, and the Zod library is used for data validation. Communication with the

ISSN 2567-5273 115 www.moderntechno.de

Modern engineering and innovative technologies

Issue 34 / Part 1

authorization service and the user management service takes place via HTTP, and
Amazon SQS is used for asynchronous processing of requests between services. The
main functions of the service include processing requests for creating, editing, and

deleting book information, validating and

processing book data, managing book

inventory, and processing orders. The service provides high performance and

scalability through the use of asynchronous

processing, reliable data validation with

Zod, and efficient query processing through the use of Amazon SQS

container-main

request

replies with a response

container-process

hitp:/iprocess:8082/api

process

communicates with
container-process

Client

sends a message to SQS
queue

response

responds with a message

container-consume

e () http:iiconsume:208&
sQs consumes the messages

Figure 1 — An example of organizing microservices

To organize the code in the project, we decided to write our own structure and
architecture with support for the MVC (Model-View-Controller) pattern, Clean
Architecture [5], and Domain-Driven Design (DDD) [6]. These approaches were
chosen to create an architecture that can be easily reused across projects, ensuring

modularity, scalability and maintainability.

& plot

m puild

m deployment

m hurl

m migrations

= Src
m entities

http

m infra
m repositories
m services
s run.ts
Makefile

w README . md

{} biome.json
k bun.lockb
s drizzle.config

package. json
tsconfig.json

= tS

Figure 2 — Code structure and architecture

This code organization allows you to create an architecture that is easy to
maintain, scalable and reusable in other projects (Figure 3). The use of MVC, clean

architecture, and DDD ensures modularity,

clear separation of responsibilities, and

ease of testing and development of the system.

ISSN 2567-5273 116

www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1 t‘}.

Figure 3 — Developed application structure and architecture

A separate Makefile and Dockerfile (Figure 4, 5) have been developed for each
microservice, along with docker-compose.yml, which allows for easy deployment
and configuration of a local dev environment for each service.

An example of a local launch:

~~/g/b/comedy ->> build TARGET=run S1-comedy-prelude+5

PULL_FLAG=

NO_CACHE_FLAG=

DOCKER_BUILDKIT=1 docker build —-—tag oxb4f/comedy:S1-comedy-prelude-9f8119b ——file bu
ild/Dockerfile —-target run ..

[+] Building 4.4s (24/24) FINISHED docker:desktop-linux

Figure 4 — The result of building a Docker image

~~/q/b/comedy ~>> run S1l-comedy-prelude+5
APP_IMAGE=0xb4f/comedy:S1-comedy-prelude-9f8119b ENV_FILE=.env.dev docker-compose —--fil
e deployment/docker-compose.dev.yml down --remove-orphans —-volumes

DETACH_FLAG=

APP_IMAGE=0xb4f/comedy:S1-comedy-prelude-9f8119b ENV_FILE=.env.dev docker-compose —--fil
e deployment/docker-compose.dev.yml --project-name comedy up

Container comedy-db-1
Container comedy

Attaching to comedy, db-1

comedy | $ bun run --watch src/run.ts

comedy | & Elysia is running at :8081

Figure 5 — The result of running with Docker Compose

A Makefile has two main purposes: build and run.

build: ## Build the Docker image for the application
ifeq (3(PULL),true)
PULL FLAG=—pull
else
PULL FLAG=
endif
ifeq (3(NO_CACHE),true)
NO CACHE FLAG=—no—cache

ISSN 2567-5273 117 www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1
else
NO CACHE FLAG=
endif

DOCKER BUILDKIT=1 docker build $(PULL FLAG) $(NO_CACHE FLAG)
—tag ${APP _IMAGE} —file ${DOCKER _FILE} —target ${TARGET} ..
run: stop ## Start the application using Docker Compose
ifeq ($(DETACH),true)
DETACH FLAG=—d

else
DETACH FLAG=
endif
APP IMAGE=${APP IMAGE} ENV FILE=8{ENV FILE} docker—compose —
—file ${DOCKER COMPOSE} —project-name ${APP NAME} up

$(DETACH FLAG)

The build target builds a Docker image for the application. First, the PULL and
NO_CACHE variables are checked: if they are set to true, the corresponding --pull
and --no-cache flags are added. Then, the docker build command is executed using
the BuildKit (DOCKER BUILDKIT=1), the image tag (${APP_IMAGE}), the
Dockerfile ($ {DOCKER _FILE}), and the target build stage (${TARGET}).

The run target runs the application using Docker Compose. First, the application
is stopped if it is already running. Next, the DETACH variable is checked: if it is set
to true, the -d flag is added to run containers in the background. The docker-compose
command (Figure 6) is executed using the APP_ IMAGE, ENV_FILE variables, the
Docker Compose file (${DOCKER COMPOSE}), and the project name
(${APP_NAME}).

Containers ¢

Container CPU usage Container memory usage Show charts

/ 800% (8 CPUSs available) /11.4GB

Q Search]]] @» Only running

Name Image Status Port(s) Actions

Running (2/2)

Running (2/2)

Running (2/2)

Figure 6 — Fully configured local launcher

For services deployed on AWS, Amazon RDS (Relational Database Service)
will be used to provide a reliable, scalable and manageable solution for working with

ISSN 2567-5273 118 www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1 t‘}.

relational databases. Amazon RDS supports several types of databases (Figure 7),
such as PostgreSQL, MySQL, MariaDB, Oracle, and SQL Server. PostgreSQL was
used for the project.

Amazon RDS X RDS > Databases]
s Databases (1) © Groupresources | G | Restore from 3 Create database
Databases
Q Filter by databases 1 @
Query Editor
Performance insights DB identifier & Status Vv Role v Engine ¥ Region & AZ v Size Y Recommen dations
Snapshots
o} database-1 © Available instance PostgreSQL eu-central-1a dbts.micro M 2 Informational
Exports in Amazon 53
Automated backups
Reserve d instances
Proxies
Subnet groups
Parameter groups
Option groups
Custom engine versions
Zero-ETL integrations New
Events
Event subscriptions
Recommen dations @) M2
Certificate updats

Figure 7 — Amazon RDS settings

An example of the settings (Figure 8):

POSTGRES USER=comedy

POSTGRES PASSWORD=postgres

POSTGRES_ DB=app

POSTGRES HOST=mydatabase.c6c8h2dvew1z.eu—central—

1.rds.amazonaws.com
POSTGRES PORT=5433

~~/9/b/plot hurl

hurl/01l-create.hurl: Running [1/5]
hurl/0l-create.hurl: (2 request(s) in 369 ms)
hurl/02-get.hurl: Running [2/5]

hurl/02-get.hurl: (4 request(s) in 677 ms)
hurl/03-update.hurl: Running [3/5]
hurl/03-update.hurl: (4 request(s) in 654 ms)
hurl/04-remove.hurl: Running [4/5]

hurl/04-remove.hurl: (4 request(s) in 846 ms)
hurl/05-list.hurl: Running [5/5]
hurl/05-list.hurl: (5 request(s) in 898 ms)

Executed files: 5
Succeeded files: 5 (100.0%)
Failed files: 0 (0.0%)
Duration: 3449 ms

Figure 8 — Example of running tests

We analyzed and selected a technology stack for building a microservices
system consisting of three servers that interact via different protocols and are written

ISSN 2567-5273 119 www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1 t‘}.

on different frameworks and runtime environments. All servers are based on AWS,
which ensures scalability, security and reliability of the system (Figure 9).
The main technologies for implementing the microservice architecture are:

Node.js for its asynchronous nature, high performance and a large ecosystem
of modules;

Bun for its high speed of JavaScript code execution and built-in tools for
testing and packaging;

TypeScript for static typing that allows detecting errors at the compilation
stage and supports modern JavaScript standards;

Docker for its environment isolation, which makes applications portable and
independent of the environment, and simplifies the process of deploying and
updating applications.

~~/g/b/comedy > build TARGET=run Sl-comedy-prelude+5

PULL_FLAG=

NO_CACHE_FLAG=

DOCKER_BUILDKIT=1 docker build --tag oxb4f/comedy:S1-comedy-prelude-9f8119b --file bu
ild/Dockerfile --target run ..

[+] Building 4.4s (24/24) FINISHED docker:desktop-linux

~*/g/b/comedy = run Sl-comedy-prelude+5
APP_IMAGE=0xb4f/comedy:S1-comedy-prelude-9f8119b ENV_FILE=.env.dev docker-compose --fil
e deployment/docker-compose.dev.yml down --remove-orphans —-volumes

DETACH_FLAG=

APP_IMAGE=0xb4f/comedy:Sl-comedy-prelude-9f8119b ENV_FILE=.env.dev docker-compose --fil
e deployment/docker-compose.dev.yml --project-name comedy up

Container comedy-db-1

Container comedy
Attaching to comedy, db-1

med) | $ bun run --watch src/run.ts
comedy | 44 Elysia is running at :8081

Figure 9 — Example of launching a microservice

Containers

Show charts

Last started Actions

Figure 10 — An example of a local launch of a distributed system

ISSN 2567-5273 120 www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1 (NGB

The result (Figure 10) was a distribution system with three microservices for the
book application, including an authorization and authentication service, a user
management service, and a book management service.

Summary and conclusions.

In preparation, an analysis of modern distributed systems and their role in IT
was carried out; an analysis of existing cloud technologies and a cloud provider was
carried out to implement the practical part. The design and modelling of a distributed
system using Amazon Web Services (AWS), Node.js, Bun, TypeScript, PostgreSQL,
Fastify, Elysiajs, Drizzle ORM, Docker, Makefile, AWS CLI, JWT, Swagger was
carried out.

The result is a distributed system with three cloud microservices for the book
application: authorization and authentication service, user management service, book
management service, which demonstrates the effectiveness of cloud services in
ensuring reliability, scalability and security. It can be used as a basis for further
research and implementation of other distributed systems based on cloud
technologies.

References:

1. Hwang, K., Fox, G.K., Dongara, J.J. Distributed and cloud computing: From
Parallel Processing to the Internet of Things / Kai Hwang, Jeffrey K. Fox, Jack J.
Dongara - Moscow: Morgan Kaufmann, 2012. - 672 p. 19 (accessed 01.10.2023).

2. Newman S. Building Microservices. O'Reilly Media, 2015. 280 p. (accessed
01.03.2024).

3. Amazon Web Services (AWS). Official AWS documentation. URL:
https://aws.amazon.com (accessed 01.10.2023).

4. Amazon Simple Queue Service Documentation. URL:
https://docs.aws.amazon.com/sqs/ (accessed 13.06.2024).

5. Martin, R. S. Clean architecture: A master's guide to software structure and
design / R. S. Martin. - Pearson, 2017. - 432 p. (accessed 10.12.2023).

6. Sbarski P. Serverless Architectures on AWS. Manning Publications, 2017.
320 p. (accessed 20.04.2024).

Anomauia. Po3nodineni cucmemu KapOuHaibHO GIOPIZHAIOMbCA 6I0 MPAOUYIUHOZO NIOXOOY
00 obuucieHb ma 0OpobKu Oanux, AKull 6azyemvcs Ha yeHmpanizosawux cucmemax. OcHoeHa
BIOMIHHICMb MIJIC YUMU NIOXO0AMU NONA2AE 8 aApXimeKmypi, y cmammi po32NsAHYymi 6uou
po3nodinenux cucmem. Poznoodinewni cucmemu Oinvw eHyuKi ma a0anmugHi 00 3MiH, 6OHU MONICYMb
WBUOKO adanmysamucs 00 HOBUX YMO8 M 6UMO2, 00380JAI0YU Ne2KO BNPOBAONCYBAMU HOBL
mexHono2ii ma nioxoou. B pobomi pozensoacmuvca po3nodineHa cucmema MeHeOHCMeHMy
OiOiomeKU KHU2 KOpucmyeada, aKka CKia0aemucs 3 YOmMupbox Cepesicis, AKi npayowms y €OUuHill
exocucmemi, aie peanizosaui Kk mikpocepgicu. Ll cucmema oyna ycniwno poszeopuyma na AWS,
BUKOPUCMOBYIOUU BIONOGIOHI cepgicu XmapHoi naamgpopmu. /s opeawnizayii K00y 6 Npoekmi
peanizoeano 61acHy cmpykmypy ma apximexkmypy 3 niompumkor (Model-View—Controller)
namepny, uucmoi apximexmypu (Clean Architecture) ma domen—opicnmosarnoeo ousauny (DDD).
Ha ocnosi yvoeco npoexmy modcua oocuioumu nioxoou 00 pedanizayii po3nooileHux Cucmem.
Pospobnena cucmema oemoncmpye, ax Mmikpocepgicu moxcymv Oymu IiHMe2poeaHi y €OUHUl
bexeno—cepeic, wo ynxyionye na xmapuiu niamepopmi AWS. Lle 3abe3neuye sucoxy naoitinicmo,
macumabosanicme ma Oe3nexy, a makodc 00360J8€ SHYUKO a0anmy8amucs 00 3MIHHUX nompeo
Kopucmyeauie i opeaHizayii.

ISSN 2567-5273 121 www.moderntechno.de

Modern engineering and innovative technologies Issue 34 / Part 1

Knrwouoei cnosa: posnodinena cucmema, AWS, MVC, Node.js, Bun, TypeScipt, Fastify,
Elysiajs, Docker, Makefile, JWT.

sent: 26.08.2024.
© Smetanenko A.V., Kulakovska I.V.

ISSN 2567-5273 122 www.moderntechno.de

