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Abstract: The paper addresses the problem of torsion of a truncated cone with an internal
spherical crack. The aim of the study is to determine the stress-strain state of the cone in the
presence of a crack and applied axisymmetric tangential load on the surface. The problem is solved
using the Legendre integral transformation, which reduces the original boundary problem to a one-
dimensional discontinuous boundary problem. The solution is represented as a sum of continuous
and discontinuous components obtained using Green’s function. The unknown displacement jump
at the crack is determined from the integral equation, solved by the method of orthogonal
polynomials with the use of Chebyshev polynomials. As a result, the stress intensity factor near the
crack is calculated, and a numerical analysis of the influence of geometric parameters on the stress
state is carried out. The obtained results are important for assessing the strength and stability of
structures with cracks and can be applied in engineering practice.

Key words: truncated cone, spherical crack, stress intensity factor, integral transformation,
orthogonal polynomial method.

Introduction.

Conical objects are frequently used in engineering practice and construction,
which makes the study of their stress state a relevant problem both from a practical
standpoint and in terms of advancing mathematical methods for solving such
problems. Of particular interest are bodies that contain defects in the form of
spherical or conical cracks, as these significantly affect the durability of
corresponding structures. In this work, we consider the axisymmetric problem of
torsion of a truncated cone (truncated along a spherical surface) containing a
spherical crack. The conical surface is fixed, while an axisymmetric tangential stress
applied to the spherical surface induces torsion.

There has been relatively little research dedicated to the stress state of elastic
cones (solid, hollow, truncated along spherical surfaces) [1-5], which was largely due
to the lack of suitable integral transformations. G.Ya. Popov proposed new integral
transformations [6,7] with kernels in the form of associated Legendre functions,
which allowed for solutions to a number of new problems for elastic cones, including
those containing defects such as cracks. Using these integral transformations, several
axisymmetric problems of elasticity theory for cones were solved in [8-10]. The
presence of conical and spherical defects within a cone was addressed in [11-13].
Nonstationary problems for elastic cones, including those with cracks, were

considered in [14-17].
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1. Problem Statement

Figure 1 — A truncated cone with a spherical crack, to which an axisymmetric
tangential load is applied
In the spherical coordinate system (r,8,¢), a cone truncated along a spherical
surface is considered, occupying the region 0 <7r <a, 0 = 0 < w,0 < @ < 2m. An
axisymmetric tangential load with intensity p(6), which induces torsion, is applied to
the spherical surface at r = a. The conical surface at 8 = w is fixed. In this case,

only the angular displacement W (r, #) and two tangential stresses are non-zero:

a 1 ow
T,,(1,0) = Grg(F W), Tg,(r,6) = Gr (E — ctg(B)W),

where G is the shear modulus of the cone material.

The displacement W (r, 8) must satisfy the following differential equation:

6(26W)+1 6(_86147) W—U 1
ar\' “ar sing 36\~ 38 sin?6 1)
under the boundary conditions:

Wl&':w =0, T”“"r:a :p(a) (2)

as well as the condition W (0,6) = 0 at the cone apex.
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A spherical crack exists in the region r = ¢, 0 = 8 < a, along which the edges
are free of stresses. Upon crossing the crack, the displacement W (r, 8) experiences

an unknown jump f (@), and the stresses t,.,, on the crack edges are zero. This leads

re

to the following conditions:

<W> =W(—-0,608)—W(c+0,608)=f(0), 0<6 <a, (3)
where
f(6)=0, a <0 <wandt,,| =0 0<8<aq (4)
r=c+
from which it follows that
Tpp> = Tpp(c—0,0) —1,,(c+0,8) = 0. (5)

In addition, the crack closure condition must be satisfied

fla)=0 (6)

2. Reduction of the Given Problem to a One-Dimensional Discontinuous
Boundary Problem

To reduce the formulated problem (1)—(5) to a one-dimensional problem, we use
the Legendre integral transformations introduced by G.Ya. Popov [6]:

(/3]
W,(r) = f w(r, B}Pvlk (cos @) sin 6 df
0

with the inverse transformation formula:

P} (cos8)
W(r,6)= ) W,(r)—=
; “NIPL (cos 0) |

where v,, are the non-negative roots of the equation B (cosw) = 0.

The application of this integral transformation is described in Appendix 1. In the
transformed domain, the following one-dimensional discontinuous boundary problem
1s obtained:

2wy () + 2rwy () — vie(v, + DWW () =0, 0<r<a, r#c

7 1 PF(
W' (@) — ~Wi(a) = & w,(0) = 0
a G
‘iWk:> = W;‘-(C — 0) — W;‘-(C + 0) - ff{

Trpr> = Trpr(€ —0) = T (c +0) = 0,

where

i = f f(B}Pvlk(ces 8) sin 8 df
0

and
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1 ’ 1
Trpi(r) = Gr (; Wk('-'"}) =G (ka(?"} - ;Wk(r})

3. Solution of the One-Dimensional Discontinuous Boundary Problem
The solution to the one-dimensional discontinuous boundary problem will be
constructed as the sum of a continuous solution U, (r) and a discontinuous solution

. (1):
Wi (r) = Up(r) + Ve (1)
The continuous solution U (r) is the solution of the boundary problem:

TZUF(”("F} + ZTU}(!(T} - V;((Vk + 1)Uk(?") = U, O0<r<a

, 1 P,
Ui (@) ——Ui(a) = —; Ux(0) =0
and has the form:
aP;, r\Vk
Uk(?") = m(a) ,wWhere 0 <r < a (7)

The discontinuous solution V. (7) is the solution to the discontinuous boundary
problem:
2V () + 21V () — v (v, + DV (r) =0, 0 <r<a, r#cC
, 1
Vi (@) = —Vi(a) = 0; V(0) =0
'in:} = VR(C — U) — VR(C + U) = fk
Trpr> = Trpr(€ —0) = Ty (c+0) =0,
To find the discontinuous solution, we will find the Green's function G (1, p) of

the boundary problem:
TZVRH(T’} + ZTV}(!(T) - Vk(v;( + 1}V;‘-(T) = U, 0<r<a

aV,'(a) — V,.(a) = 0; V,,(0) =0
The Green's function has the form (as derived in Appendix 2):

()
—|-) ,0<r<p<a
G (r,p) = — he T 2 (E)vk T
a(v, —1)(2v, + 1) \a? 2V + 1| 1 /p\Vk
K ;(;) , U«::p«::'r«:a

It can be shown that the constructed Green’s function G (7, p) has the following

837Gy (r.p)

properties [18]: G, (r,¢) and arap

are continuous when passing from point
p=c
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: . N dGg(r, 3G, (r,
r=c—0 to point r= ¢+ 0, while the derivatives —;E’ 9 and 7‘;(!; P)
p=c
1 o 1 1 . . . o,
experience jumps of —— and - , respectively, during this transition. Thus, the

discontinuous solution has the form:

aGk (:'."', p}

174 — a2
() =c¢ ap

< V‘;‘. (C) =

— <V, (c) =G (1, c)‘
p=c

From the conditions on the defect, we obtain:
(Vi (@) = V(e — 0) = V(e + 0) = [}

i > = Trpr(€ —0) = T (c+0) =

' 1 , 1
—6|v'c-0) —EVR(C—U}] 6|/ e+ 0) AG +0)| =

, 1
= 6|/ ©) =~ W) = 0

From this, it follows that (V. (c)) :% (V. (c)) :% fr. Therefore, the

discontinuous solution will be:

b = ¢ [ PRAGT) 3Gy (r,p)

1 — .2
- Ekak(rrC} =cC ap

1
o - CGR(T:C}‘fk

p=Cc p=c

The solution to the discontinuous boundary problem is the sum of the
continuous and discontinuous solutions:

apy ("'")v"" 2 [aGk(T:P)

Wie(r) = G(v,—1) a dap

1
- EG;:('-'":C} fx

p=c

Next, using the inverse transformation formula, we obtain:
o0

W(r,0) = EZ P, (I)Uk P, (cos 6) -
G o1k 1ta ||Fv1k(cos¢9)||

+Z C2 aGk(r!p}
dp

k=1

(8)

1
B %Gk(r,c)‘f F; (cos )

k
p=c P (cos )]°

The obtained expression for the displacement contains the unknown value f;,

the transform of the displacement jump on the crack. Based on condition (4) on the
crack, we derive an integral equation to determine this jump.
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4. Obtaining the Integral Equation
Consider

fo= | FRLCcosm sinn dn
0

and integrate by parts

| « [d |
fie = F sing - B (cos )| - af iy () sin S, (cos

Due to the crack closure condition (6), the non-integral term vanishes. Let us
denote the new unknown function as:

d .
gm) = n (f()sinn)

As a result, we have:
o

fie= | anRY Ccos ma
0

We substitute this representation for f; into expression (8) for W(r,8) and

change the order of summation and integration (the series converges uniformly for
r # C):

= r\vk Pl (cos@
W(]",B} — . 'L-'k(: ) . .
Ve 122 IR (cos 0)|
= G, (1,p) 1 Pl (cos )P (cosn)
fg(n} Zcz[ . = EG;((?",C)‘ o |d
0 k=1 p=c ”ka(cosg}ll

To find the unknown function g(7), we use the condition of zero stress on the

edges of the crack t =0, 0 <8 < a . For this, we find the expression for

”Plr'zci()

the stress:
d (1
T,,(1,0) = Grg FW(r,B} .

We apply this operator to the expressions:

a1, r\ve vi. — 1 1
ol @ 1= @)

r@'r

'L-'k_l

and
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d |1 aGk(r:P) 1 .
Cz?"g ; T —EGR(T"C} = Gk(?";c)
p=c
where
0
v, +2 Vel Ve — Dy + 2) 1= (= r<ec
Gi(r,c) = 2c2 = (_) .a—ka—1+( k= DO +2) )5\
ZVF( +1\c zvk +1 1 (C)U_E( N
—(2) " r>ec
rZ\r
Accordingly, we obtain:
o) =G R (R) -
k=1 ||ka(c058}||
o o0 Pl( B}PG( }
cos cos
_G"’g(n} ZG;(T’:C}' v Vi 2?]' d
0 k=1 ||Pv1k(cos 6)||

When r # c, as can be seen from the obtained expression for G (7, ¢), the series

converges uniformly. Therefore, we can differentiate the resulting expression with
respect to 8. Taking into account that:

[ PL(cos8)d8 = P2 (cos 8)
K K

we obtain:

CCI

By (cos 8) P, (cosn)

- rvi1 P°%(cos @

fr,.@(r,a}da -~ Z P, (E) v (€05 6)
k=1
w(r,c)

P2 (cos 6)]|°
o
f g(n)
. =i P2 (cos 0)])°

where A(r) is some function.

dn + A(r)

To derive the integral equation for g(n), we should take the limitas r - ¢ + 0
and set the resulting expression equal to zero. Using the formula for G (r,c), we

obtain:

- cyve1 1,'?(_(caas 6)
S e
k=1 |P1 (cos 6)|

22 Z v, +2 21 onk(cc:s Q)onk(ces n) N
2
k=1 2V + 1 ||Fl,1k(cos 6 )”

—G ﬁg(n)
0
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1 (v — (v +2) B2 (cos 8)P° (cosn)
_Z . v~ ldn +4,=0, 06 < a,
Ciol Vi ”Pvlk(ms o)l

where A, = A(c) is an unknown constant.

We now examine the convergence of the obtained series using the known
asymptotics of the Legendre functions [19]:

2 E [( N 1)8 H] k
. — - — — 00
Vi 2cos || (Vg > ik

Fl?k(cos 8) ~ ——

0 2 _1 1 m
P, (cosn) ~ HSiI’lI}lvk zcos[((vk—i—g)n—g], k — oo

as well as the asymptotics obtained in Appendix 3 for

v f-»Ek' ||P1(c058}||2~8v k — o (9)
14 w Vi T ko

The series

S g (6 Baleos)

k=1 ”Pulk(msa)llz

will converge uniformly, as the condition ¢ < «, and considering (9)

onk (cos9) I8 2 3

~— |———+Vv; 2c0s
||Fu1k(6059)||2 w . |msin@

(erz)o-5] &
+ — ——1, —
(Vi 2 4

Let us denote its sum as:

o) =Y () Bt
— (= .
k=1 a ”Pmrlk(msa)”z

Next, the series
Z vy, + 2 . onk(cc:s Q)Pv?((cos n)

2
= 2ve T 1P, (cos )]
will also converge uniformly, as the asymptotic of its general term is as follows
_Z'Lv'k_l
- 2 ((u + 1) 7 - cos [((u + 1) H] k — oo
V) “cos -0 —— —|n——,
K ko 4 kTS n 4

w,/sin @ -sinn

Let us denote its sum as:

oo

R(O,7) = Z Vi+2 gy Bulcos8)F; (cosn)
’ 2
k=1 2ve +1 ”Pvlk(COS 9}”
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As for the remaining series
i (v — (v, + 2) . onk(cc:s Q)onk(ces n)
2
k=1 Ve + 1 ||Fv1k(cos¢9)||

the asymptotic of its general term

e eosl(vrg) o —geos[ (e g)n -]
Vi ccos||(vp+=)8 ——|cos||(vp+=n——|, k— oo
w,/sin @ - sinn “ 12 4 12 4
implies conditional convergence.

In Appendix 4, the extraction and summation of its slowly converging part has
been carried out, and it has been brought to the form:

T
1 1 2sin—60 —nl w—(6+n)
—In + In 2 + +N(6,n),
Zwﬁfsinﬁsinn[ 16 —nl 16 —nl
where

N(6,n) = ZN: [(Vk — 1) (ve + 2) . Fvﬂk(cos B)Fv?a(cos n) B

= 2v, +1 ||Pv1k(c05 9)”2

1
— (cos v, (8 +1n) +sinv, (6 + 1))

2w,/sin @ sinn

!

and

2 sin—|6 — nl T
lim In 2w =Iln—
|6—1|—0 6 —n]| 2w

Thus, the integral equation for the function g(n) takes the form:

o o
G g 1 f 1
In dn — G ()Péﬂw,)+—ww,}+
ch\fsinﬁﬁ Jsinn 16 —nl 7 . g P d

m
) 25010~ w— (8 +

In e + ©+m) dn
2w,/sin @ sinn 16 —nl 2

=-M(B)—4, 0=6<a

_|_

Multiplying the resulting equation 2wcvsin 8 and introducing a new unknown

function:
g

sinn

o(n) =

the integral equation becomes:
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o 44
1
| eming—dn ~ [ oK@, min =
0 0
= —2wcG Wsin8 (M(8) + 4y), 0=68 <« (10)
where K(6,1) can be written as:
1 2 sin— |0 — n|
K(8,n) = 2wc,/sin G sinny [ZCZR(B,I;J) +—N(6,7)|+In l;“’ nl +
C J—
w— (0 +
N (2 1)

5. Solving the Integral Equation by the Method of Orthogonal Polynomials
In the obtained integral equation (10), we first perform a change of variables to
transform the integration interval from (0; ) to the interval (—1; 1):

o (24
6=2@t+1; n=5(+1

As a result, we arrive at the equation:
1 1

[or©@m—rde~ [o©[k @O -m]as -

-1 -1

4w a _
= ——— [sin=(t+ 1) (M*(t) + Ap)
aG 2

where

a
m%azm(§@+1ﬂ;
(4
M*(t) = M(E(t + 1});

K'(t,&) = K (g (t+ 1.5+ 1});

The presence of the spectral relation [18]:

1 _
[ B
: — — 2 —T , n=1,2,..
o R TN e = AN
allows the use of the method of orthogonal polynomials [18] to solve the

obtained integral equation. We will seek the solution in the form of the expansion of
the desired function into a series of Chebyshev polynomials of the first kind T;,(£)
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©-—Y pin
@ \/1_752;(20 Prlk

Let us substitute the expansion for ¢ (&) into the integral equation and use the

spectral relation:

1 1
> 1 Tk(f) - . T () . 2
O In o ————|K"(t,&) —In—|d¢é =
; f it—¢| r’l_(’tZ ; k ,’1_52[ a]
-1
4wc

-2 sin%(t +1) (M*(D) + Ag)

1
o0 - T
ZWPka(ﬁ} Z . \/ﬁK*(t,f)dSJrln Z . \/1;((_76)52

4wce a _
_ sinz(t + 1) (M™(t) + Ap),

aG
nln2, k=0
=10 =1

!

where

Taking into account the orthogonality conditions of the Chebyshev polynomials:
1

Te(ET(©) 0 L k=)
ﬁdf - 5kj|Tk(<f)|2: T (D) = t‘—’ k=1" Ok;j :{[]’ k +j

and the fact that T, (¢) = 1, we get:

that is,

T, 2
® _
“ =0 V1-¢7 «
-1

: : : T; : :
Let us multiply the obtained equation by V% and integrate with respect to t
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from—1 to 1:
1 1
Tk (BT; (t) . (t) ;c(s’ )
1
| 2 T;(t) 4awc T;(t) | [« * d
+ HECPD m dt = — poye msm E(tJr 1) (M™(t) + Ap)dt
-1 1

Let us apply the orthogonality condition:

°Bjg Zﬁﬁk i + T2 In— 400510 C; + AgDj, where j =0,1,...
k=0
In2,j=20

_ J _— ,
D; = sin 5 (t+ 1)dt;

We normalize the resulting infinite system of linear algebraic equations. Divide
2 . o * * 1
by m* and ,/B; , and introduce Y; = \/B;@;; ¢; = T,B_jwj. Then

¢ In—
l}’Jj _Z Bj*ktpk +ﬁl}’)05}0 - C; + AGD;, I‘,[Lej =01
k=0
By C:

] * ] * ‘Dj
JBiBx J/B; By B;By

To compute integrals of the form:

* —_—
B =

:
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T;(t)

N

1G) = | F(t)

-1

we will use the Chebyshev quadrature formula [22]:
(2i — 1)1'T
ff(x) Zf(X) x; = cos ="

2n
T;(x;) = cos(jcos ™' x;) = cos

j2i—1)m
2n
Thus,

I(j) = gz F(x;) cosj—(mz; L
i=1

Since the right-hand side of the system contains the unknown constant A4,, this

system needs to be solved for two right-hand sides C; and D ; Denote these solutions
by i'pj and fﬁj Then y; = iﬁj +AG$;,. To find Ay, let us consider the function

g(n) = /sin n - @(n) and compute:

4 o o d
fcp(n)\#sinndn = fg(n)dr;s = fﬁ(f(”}sm ndn = f(a)sina =0
0 0 0

considering the conditions of crack closure in equation (6). On the other hand,
1

J’qo(n}ﬂfsinndn f qo(%(f—kl)) Jsin%(f—kl}-gdf =

-1

1

“fqo(e)Jsm—(fH)de f LS o) o e v 1t -

-1

f T §) sin%(f—kl}d{ =

Tk(f)
B Z\/B—k \/1_7

sm— (E+1)dé =
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1
a1, =~ T (&) o a
==Y ——(, +409,) | === [sins (F+1)dE =0,
22, 75 74 | o
-1
that is,
Z \/?(fa m—f+1}d§+
T (&) .« _
+AOZ \/1_7 smz(erl}df—U

From this, we find A,:

Z T (&)
\/B_k Jl — &2

a
sinE (E+1)dé

Z ‘/f(_i} sin%(f—l—l) dé

6. Determination of the Stress Intensity Factor

In the analysis of elasticity problems for bodies containing defects in the form of
cracks or inclusions, a key focus is on the stress intensity factor (SIF). Its value is
involved in fracture criteria, particularly when studying the growth of cracks. As the
crack tip is approached from the outside, the stress increases indefinitely and the SIF
serves as a measure of stress concentration near the crack tip. In the case of torsion

problems for bodies, the SIF is defined as:

K= lim 2n(6 — a) - r,.@,('r,ﬂ}L:C

G—-a+0
Let us write the previously derived expression for the shear stress in the form:

G d 1
(1,0 ] d
r?‘p(r }|?'=C chda [ {—S]_]_] J’ (f?(r) n rl r

where the ellipsis represents terms that have a finite limit as 8 — a + 0, since at this

limit, these terms approach zero due to the factor /2w (8 — «@).

Taking into account the previously applied change of variables, we obtain:
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1

T, (1,6)] __fa ! f “(H)in ! dé|+ - =
e 2wedt Jsin E(t+1}_1¢) It =<l
2
G 3
=5 —%COS—(I:—F]_} (sm (t+1) fqo (f}ln Stl dé
1 !
+(sm (t+1)) dt Q@ (f)lnl 7 dé |+

The expression for the stress intensity factor (SIF) will take the form:

G |«
K= lim Jam(t+ 1) S [4(:05(15 + 1) (sm (t+ 1})

t—=1+0

mlnu

1 1
. «a E
. “( )ln sin—(t+1} f “( }ln
fl 0O d —(sin 0 g df
Substitute into this expression:
P (&)=
and we obtain:
_3
2

Ky = GYan lim vt — 1 [Zces(t +1) (sm (t + 1})

2aC t—=t+0

,i@ f T
LT e—el J1—52

Jsina(f-i—l)z P 7= f - Tk(e)
- > k
2 = dt |t—<f| #1_62
We will use the following result [21]:

1

1 Tk(f) m
f T \/1—762 —>E, ast—-1+0

-1
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o

-1

1 T (& }

AN —52

Z\r’t—l

+ 2k, ast—-1+0

Then we can take the limit and use the formulas provided earlier:

Gyanm |« 3 1 7
Ky = |—-cosa(sina) = "Pk hm F k(f)
2wc 4 |f yy \/1—752
v " o (6}
—vsina Z (Pk lim F f Ty
— t—1+0 |t _ fl \/1—7{?2
G am - 2 % 2an
= @, lim Ve—1-|— Z or =
\fsm as K t=1+0 ZF we lsina

7. Numerical Results

This section presents the numerical results of the boundary value problem for a

truncated cone with a crack.

Table 1 - Roots of the equation Pl (cos w) = 0

Vi /W /3 /4 "Ie

Vo 0 0 0

vy 3.19569115 4.405329182 6.835398076
Vs | 621952915 8.447112619 12.90828411
Vs | 9.22884936 12.46332876 18.93644579
Ve | 1223842913 | 16.43193967 24.99134578
Vs 15.24800891 20.39145199 30.04624577
Ve 18.25858867 24.35096421 36.10114576
vz | 2126916844 |  28.31047633 42.15604575
Ve | 2427974821 |  32.26998836 48.21094574
Vo | 2729032798 |  36.22950029 5426584573
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The analysis uses the eigenvalues and squared norms of Legendre functions,
computed for several values of the angles 8. The obtained values are shown in tables,

which display the first roots of the equation Pl(cosw) =0 (Table 1), and the

corresponding squared norm values ||Pv1k (cos 8) ||2 (Table 2).

Table 2 - Values of the norms ||P$k (cos @) ||2

Vi / 6 /3 /4 /e

Vo 0 0 0

Vi 9.58707345 17.621316728 41.012388456
V2 18.65858745 33.788450476 77.44970466
Vs 27.68654808 49.85331504 113.61867474
Vg 36.71528739 65.72775868 149.94807468
Vs 45.74402673 81.56580796 180.27747462
Ve 54.77576601 97.40385684 216.60687456
V7 63.80750532 113.24190532 252.9362745
Vg 72.83924463 129.07995344 289.26567444
Vg 81.87098394 144.91800116 325.59507438

As can be easily seen, the obtained values agree well with the asymptotic results
presented in Appendix 3.
To analyze the stress state near the crack, the stress intensity factor (SIF) Kj;;

was calculated for various geometric parameters of the problem. The applied load
was chosen in the form
P(6) = P.(w —6)?

Table 3 — Influence of crack height ¢ on K, for fixed angles w = 7 /3, & =T/

with a cone height of a = 1

€ K

0.2 0.15566
0.4 0.76263
0.6 1.76408
0.8 3.14367
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The system of infinite equations was solved numerically using a reduction
method, which allowed the calculation of the SIF values for various geometric
parameters.

At fixed angles w = H/g ua= H/E;’ increasing the crack height ¢ leads to a

significant increase in the value of Kj;.
Table 4 — Influence of angles @ and a on K;; with a fixed crack height c = 0.4

and cone heighta = 1

W a Ky
"/ e 0.76263
/4 /s 0.45961
/e "/12 0.19519

At a fixed crack height ¢ = 0.4, increasing the angle w and correspondingly
decreasing the angle a leads to a decrease in the value of Kj;.

8. Conclusions

In this work, the axisymmetric problem of torsion for a truncated cone with a
crack was solved using the method of Legendre integral transforms. The problem was
reduced to a one-dimensional boundary problem with a discontinuity, for which
analytical solutions were obtained in the form of a sum of continuous and
discontinuous solutions. During the solution process, eigenvalues and the roots of the
equation PBl(cosw)=0 were found, as well as the corresponding norms

||Pv1k(cos 8}”2.

Based on the obtained expressions for displacements and stresses, an integral
equation was derived to find the unknown displacement discontinuity at the crack,
which was then solved using the method of orthogonal polynomials with the
application of Chebyshev polynomials. As a result, precise formulas were obtained
for calculating the stress intensity factors (SIF) Kj;; near the crack, which allowed for

a detailed numerical analysis of the influence of the geometric parameters of the cone
and the crack on the stress state.
Appendix 1 We multiply both sides of equation (1) by B!(cos8)sinf and

integrate with respect to the variable 8 from 0 to w:

fma ( ZaW)Pl( 9) sin 6 d6 +
. ar r ar v COoSs sSin

+fw 1 a(_ aaw) 1 W]Pl( 6)sin 6d6 = 0
o lsind 06 P sin26 v \€cosU) s =
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In the first integral, we change the order of integration and differentiation:

I g wel ] 6 do g ow
1= §XT—J’ (cos 8) sin 6r(r E)

In the second integral, the first term is integrated by parts twice:

« g ow
f (sm 8 —) Pl(cos8)d6 =
0

08 ol
oW _ . ~ 9RX(cosw)
= — sin w P (cos w) — Wlg_,, sih w —————
a6 8=w a6 B=w

+J"”W d (  9Rcosw) "
T sinw ———

Due to the first boundary condition (2), the second term vanishes, and for the
vanishing of the first boundary term, we require that v, be the non-positive roots of

the equation B!(cosw) = 0. The second integral takes the form:

J""‘W 1 0 tg)cﬁ';c'vlk({:{)s 6) 1 P1 (cos 0)
0 sing 96 " a6 sin2g Ve O

Using the Legendre equation:
1 9 ( anl;( (cos @)
sin

sin 6 df

1
- P, 6) =v(v+ 1B} 6
sinf 90 a0 ) sinZf v (cos8) =v(v+ 1)F; (cos )

this integral is written as:

[
I, = —v (v + 1}f WPvlk(ces G)sin 8 df = —v, (v, + 1)W,
0

From here, the equation in the transform will be as follows:
d [ ,0W,
é?r(r F)—vk(vk—kl)wk—[] 0 <r<a r#c
Applying this integral transformation to the second boundary condition (2) and

the condition at r = 0, we obtain:
7 1 PF(
WR (a} _EWR(G} = E, WR(D} =0

Appendix 2 To find the discontinuous solution, we construct the Green's
function in the form:

G (1, p) = {

_'I.a"k_l
]

FAY

apr’F + agr 0<r<p-
borVk+br™Vcl,  0<p<7r-

a

T

a

Using the conditions for the continuity of the Green's function and the jump in
the first derivative, we get:
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agp'* +byip Ykt —agp¥k —ayp TVt =0

1
bovip VL — by (v + 1)p V2 — agup¥ Tt +ag (v + 1)p VT2 = p

From the boundary condition v,(0) = 0, it follows that a; = 0. From the
boundary condition av;'(a) — vi(a) = 0, we get:
a[bovia’ 1 — by (v + 1)a V¥ 2] — [bya"* + bya V¥ 1] =0

Solving this system, we find:

R S
(v — D(2v, + 1) \a? a 2v,+1
vy, + 2 pre 1
b= T D+ D (?) a
— 1 v
by = " i 1? ¥
Then, the Green's function G, (1, p) is
r\Vk 1
G (1, p) = — o (E)vk—il (5) prl TP
a(vy —1)(2v, + 1) \a? 2v, + 1 (E)”kll cp<r<a
r/ or

Appendix 3 Let us consider the asymptotic expression for the Legendre
functions [19]:

L 2 1 1 T
P, (cos ) ~ g vk 2008 [((karE)@ —Z], k — o

To obtain the asymptotic expression for v, we need to equate the leading term
of the cosine argument to zero. This condition gives us:

1 s
(kar—)B ok kez
2 4
Considering large values of k, we can simplify the expression:
T
v‘;‘."‘"_ k, k — 00
w

Substituting these same formulas into the expressions for the norms squared, we
get:

(1)
IR (cos 6|2 = f (B (cos )] sin 6 d6
0

After integrating, we find that:
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|R} (cos 8}||2~§vk, k — o

Appendix 4 Consider the series

o0

Z (v — (v, + 2) . onk(cc:s Q)onk(ces n)

— 2vp +1 ||Fl,1k(cos 8)”2

The asymptotics of its general term is as follows
2 1 1 T 1 T
Vi cos[((vk—i——)a——]cos[((vk—l——)n—ﬂ, k — oo

w,/sin B - sinn 2 4 2

That is, the series converges conditionally. We isolate its slowly decaying part.
For this, we write the obtained asymptotic as:

2 Vit [CGS V(6 — 1) + cos [v"‘(a - g” B

2w,/sind siny
-1

v
= i [cos v (6 — 1) +sinv, (6 +1n)]

20 JsmOsmy
We transform the series under consideration as follows:
i (vie= D (v + 2) B (cos )R (m) _
= 2ve +1 ||Pv1k(ces 6‘)”2 N

k=
N 0 0
(v — D(vi + 2) . P, (cos8)P, (cosn)

e~ 2v, +1 ||Pv1k(cos 9}”2

+Z (v — D) (v + 2) . onk(cos B}Pv?((ms n) _
2
k=1 Ve +1 ||Pv1k(cos 9}”

Assuming that N is large enough so that the second sum can be replaced by its
asymptotic expression, we get:
B ZN: (vip — D (v + 2) . onk(cos B}onk(cos n)
- — 2vp+1 |PL (cos 8}”2

_|_

1 i cos v (6 —n) +sinv (6 +1n)

2w4/sinfsinn | & Vi

N
B Z (vip — D (v + 2) . onk(cos B}onk(cos n)
— —
k=1 Vet 1 ||Pv1k(cos 9}”
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cos v (8 —n) +sin v, (6 + n)

N
e
£~ 2w,/sin Bsinn Vi

—1)(vy + 2) . onk(cos B}onk(cos n)

N 1 ZN: (Vi
2o sinfsing A 2v+1 IPL (cos &)

1 :§: (vi — D(vg +2) P (cos0)PS, (cosn)

2wy/sin@siny & Zvp+1 |PL (cos 8}”2

N
B Z [(vk — (v, + 2) . onk(cc:s Q)Pv?((cos n)
= o

_|_

k=1

1 cosv,(6 —n) + sinv,(6 +n)

2w,/sin @ sinn Vi

1 i cosvi (8 —n) + sinv, (6 +n)
+
2w4/sinfsinn &4 Vi

The first term 1s a finite sum, while the second term is a series that can be
summed using formula 5.4.2.9 from the reference book [20]:

1 (sin(kx + T — X (COS a Xy (Sin a
A T a0 0 <xana=o
K 2

- cos(kx + a) 2 lsina cosa
Thus,
i cos v (6 +n) +sinv, (6 +n) mi CGSE(Q -k +sin£(9 — )k B
Vi R k a
k=1 k=1

T
H—;(Q'FI?)E
2 T

Zgln(Z sin%l@ —nl) +

We extract the singularity from the first term:

. B 1 1 o B
ln(ZSm%l@ —ryl) = _ln|9 - +ln|a ol +ln(25m%|9 —ql) =
T
1 2sin—|6 —n]
= —1In + In 2w
16 —nl 16 —nl
Note that the second term does not have a singularity, as:
2 sin—|6 — n| T
lim In 2o =In—
|8—7r|=0 |9 — I;ll 2w
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Appendix 5 To compute the norm squared, we use the following equation:

(1)
IR (cos 6|2 = f (B (cos )] sin 6 d6
0

Consider the Legendre equation with respect to y(8) = P (cos8):

dy(6)
ao

d 1
Lly(B8)] = — I (sin ) ) - i 8)2}!(8) =v(v+1)sin8 y(8),

and the two solutions B! (cos ) u B} (cos ) when v # y:
L[R}(cos@)] = v(v + 1) sin @R} (cos §)
L[B}(cos )] = y(y + 1) sin 6B} (cos6)
We multiply the first of these by Pvl (cos@), and the second by B!(cos8), and

subtract the results:
d 9P (cos )

_ . @ _ 0P/(cosB)
—% lHQTP‘, (COS 8} + @Sln QT

= [v(v+ 1) — y(y + 1)]sin@ B} (cos Q)P‘}(cos 6)

Pl(cos8) =

Integrating this identity over the interval (0; w):

viv+1) —y(y+1)] fmﬂ,l(cos 6)P/ (cos ) sin 6 df =
0

B J’“’é‘ _86}’“1((3058} P (cos 8)d0
=), sin 55 o1 (cos

+J.wi sin@w Pl(cos 0)de
o 00 a6 v

We integrate the first part by parts:
9B (cos 6) “

LY]
—sinB-T-Pyl(cosﬁ) . +J; sin@ -

0B (cos®) AP} (cos@
2 (cos A) O0F, (cos }da N
a6 a6

6P],1 (cos 8)

6P},1 (cos8) 9R}(cosB) 46
a6

a0 a0

+sin @ -

[ih]
- Bt (cos @) —f sin @ -
0 0

9P (cos )

9P} (cos9)
Y 1
— P 0
(cosB) 30

1
P, (cos8) 30 v

= sinw -

B=w

Thus, we obtain the equality:
(V]

f R!(cos )P} (cosB)sin 6 dO =
0
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sin w

B AR (cos 6)
B viv+1)—vy(y+1)

9P (cos®)
Y 1
P, (cos @) Y #V

P}(cos8)

6=w
For calculating the norm squared (y = v) the obtained equality cannot be

directly applied, since there will be an indeterminate form on the right-hand side.
Therefore, let us take y = v + € in this formula and consider the integral

w
f Pl(cos@)PL .(cosB)sin 8 do =
0

sin w aPL (cos®
_ EL,I(CGS 8} \J+E( )
viv+1l)—(v+e)(v+e+1) a6
aP(cos @
— FU1+E (COS Q}M
5 1v) 5
=w

Taking into account v(v+1)—(v+e)(v+e+1)=—€(2v+1+¢€) and

taking the limit as € — 0, we obtain:
()
f [Bl(cos8)]?sin 6 df =
0

sin w Pl( 0)
= cos .
2v+1|"

d dR}(cos ) 9P (cos8) OR}(cosB)
av a6 - av a6 -

For v = v, considering that Pvlk (cosw) = 0, we get:

sinw [dP; (cos6) 9P (cosw)
adg 5
=0

ka+1

2
||Pv1k(cos 8| = 5

V=V
The derivative with respect to & can be calculated using the formula:
anlk (cos 8)
a6

1 Vi +1
= vy cotw - Py (cos w) —

‘ Pvlk_l(cos w)

B S w

For the derivative with respect to v, one should use the representation of the

Legendre function via the hypergeometric function:

O~ (—v):(v + 1); 6%
Pl(cos0) = cet—z ( }]_( _ ) (sin —)
2 4 rg -t Z
1=0
_ ] Tla+j) .
where (a);=ala+1)..(a+j+1)= Ik (a)p=1 1is the Pochhammer

symbol.
Let us consider a function of the form:
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rG—v) - r(G+v+2)
r—v) -r(v+1)

F(v)=(—v);- (v+1); =

We take the logarithm of it and find the derivative with respect to v, considering that

Y(z) = r—(? z#0,—1,-2,..

From here, we obtain:
F(v) =FOG+v+1) —yv+1-j)]

As a result, we have the exact formula for calculating the derivative with respect
to the index:

9P} (cos8) tB = —v;(v + 1)j[ G ) Wil ( _ 9)2j
- = — - - —+ —+ — + — " —
P co Z.EG SOBT W +v (v j 51112
]:
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Anomauia. Y pobomi pozensioaemuvcs 3a0a4a KpyueHHs YCiueH020 KOHYCa 3 GHYMPIUHbBONO
cepuunoro mpinunoro. Memoio 00CiONCeHHs € GUSHAUEHHS HANPYHCEHO-0ehOPMOBAHO20 CIMAHY
KOHYCa 3a HAA8HOCMI MPIWUHU | NPUKIAOEHO20 8iCeCUMEMPUYHO20 OOMUYHO20 HABAHMANCEHHS HA
nosepxmio. J{nsa eupiuienHs 3a0adi 6UKOPUCMAHO iHmezpaivhe nepemseopenHs Jledcanopa, ske
00380/1€ 368eCcmu GUXIOH) Kpaitlogy 3a0ady 00 0OHOMIPHOI po3pusHoi Kpauioeoi 3adaui. PiwenHs
npeocmasieno y uiaoi Cymu Henepepenux i pO3PUGHUX CKIAOOBUX, OMPUMAHUX 13 3ACMOCYBAHHAM
Gdyukyii ['pina. Hegioomuti cmpubox nepemiuyeHHs HA MPIWUHI BUSHAYAEMbCS 3 THMESPATbHO2O
DIBHAHHS, AKE GUDIULEHO MEeMOOOM OPMO2OHANbHUX MHO2OUNIEHI8 13 BUKOPUCAHHAM MHO2O0YIeHI8
Yebuwesa. Y pesyromami obuucieHo xoeghiyicnm iHmMeHCU8HOCMI HANpy’ceHb nooOaU3y Mpiyuru
Ma NpoBeoeHO HUCENbHULL AHANI3 BNIUBY 2eOMEeMPUYHUX NAPAMEmpPI8 HA HANPYHCEHUll CMAH.
Ompumani pe3yromamu € GaANCIUBUMU ONIL OYIHKU MIYHOCMI mMa CMIUKOCMI KOHCMPYKYIU i3
MPIYUHAMU MA MOHCYMb OYMU GUKOPUCIAHI 8 THICEHePHIUl NPaKMUYi.

Knrwowuoei cnosa: 3pizanuii Kowyc, cehepuuna mpiwuna, Koegiyienm IHMEHCUBHOC
HANpys#ceHs, iHmecpanbHe NepemeopeHHs, Memoo OpmMo20HALIbHUX MHO20YIEHIE.
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