
 

 Modern engineering and innovative technologies                                                                    Issue 37 / Part 1 

ISSN 2567-5273                                                                                                                                                                                   www.moderntechno.de 158 

http://www.moderntechno.de/index.php/meit/article/view/meit37-01-064 
DOI: 10.30890/2567-5273.2025-37-01-064 

RESONANT AND NON-RESONANT ELECTROMAGNETIC FIELDS 

 IN QUASI-OPTICAL OPEN RESONATORS 
Konstantin Lukin 

Dr. of Sciences, Prof., IEEE Fellow 
ORCID: 0000-0001-9998-9207 

Institute for Radiophysics & Electronics NASU, Kharkiv, 12 Ac. Proskura St., 61085 
and  Instituto Tecnológico de Aeronáutica (ITA), Brasil 

Lidiya Yurchenko 
PhD, Senior Researcher 

 ORCID: 0009-0008-2608-7761 
Institute for Radiophysics & Electronics NASU, Kharkiv, 12 Ac. Proskura St., 61085 

 
Abstract. A new approach to the solving the problems of electromagnetic fields excitation is 

suggested for quasi-optical open resonators (OR) described in terms of Fredholm’s integral 
equations. The general structure and character of the dependence of the non-resonant part of the 
excited field in the vicinity of a single quasi-eigen (resonant) mode on the excitation frequency and 
Q-factor of this mode are defined. A formal transition to the equations of the well-known theory of 
quasi-optical OR excitation is shown. A new form of the power balance equations for active and 
reactive powers in the system "OR + Source" is proposed. These equations are suitable for analyzing 
the non-resonant radiation and calculating the conversion coefficient of the source radiating energy 
into the energy of the OR quasi-eigen mode. The suggested approach is applicable in design of OR 
based microwave, terahertz and photonics devices. 

Keywords: open resonator (OR), quasi-optical OR, OR quasi-eigen mode, resonant and non-
resonant fields, field energy balance 

Introduction 
Open Resonators (OR) are used in design of optics, infrared, terahertz (THz), 

microwave and photonic devices [1,2]. One of the main challenges of the OR based 

devices investigations lays in the elaboration of the OR excitation theory. Excitation 

theory of a cavity essentially uses representation of the EM fields as a superposition of 

the cavity’s normal modes with a coefficients which are solutions of the related spectral 

theory and forms an orthogonal basis in functional space. However, there is no normal 

modes in ORs which could form a complete system of eigenfunctions of the discrete 

spectrum, and, consequently, there is no representations of the excited field in the form 

of the superposition of these modes with coefficients calculated via the source current. 

From the physical point of view, this is due to the fact that in addition to the diffraction 

energy losses of the OR quasi-eigen modes, in the ORs there is always take place a 

non-resonant radiation of the source, which is not associated with the diffraction energy 

loss of the OR quasi-eigen mode. In [3-5] a new approach is developed in the excitation 

theory for two-dimensional ORs by internal sources. The proposed approach uses 
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efficient algorithms of the mathematical theory of electromagnetic waves diffraction 

which is based on the method of Riemann–Hilbert Problem [6].  This method enabled 

adequate formulation of the OR spectral problem [7-8] and was used for constructing 

the Green’s function for the considered class of ORs [3-5]. The found solutions of the 

OR excitation problem enabled calculating the fields both inside and outside the OR 

resonant volume with an arbitrary relationship between the wavelength and the OR 

dimensions.  

In the present paper, a similar approach is elaborated within the framework of 

approximate methods of diffraction theory, which allow calculating fields in quasi-

optical OR having complex-profile mirrors, in particular in the OR of a Diffraction 

Radiation Generator (DRG) containing a diffraction grating [1,2]. 

Resonant and Non-Resonant Fields Excited by Arbitrary Sources in Quasi-
Optical Open Resonators 
Approximate methods of diffraction theory of electromagnetic waves enable 

calculating fields in quasi-optical OR having dimensions of its mirrors essentially 

exceeding the field wavelength. The required general relations for the problems of 

excitation of quasi-optical ORs in the Kirchhoff approximation  were obtained long 

time ago with the corresponding mathematical justification. [9,10]. In this section, we 

show that representations similar to those in [3-5] are also valid for quasi-optical OR, 

and the entire scheme for calculating the fields in ORs excited by linear/nonlinear 

currents is applicable within the framework of a step-by-step approach to self-

consisting solving the OR excitation problems.  

Let us consider a quasi-optical resonator with perfectly conducting mirrors and 

dimensions that ensure the fulfillment of the conditions 𝑘𝑘𝑅𝑅 ≫ 1 and 𝜆𝜆 ≪ 𝑎𝑎 , where  𝑅𝑅 

is the smallest distance between the mirrors and 𝑎𝑎 is the aperture of the mirrors. In this 

approximation, the integral equation for the 𝑇𝑇𝑧𝑧 component of the field on the OR mirror 

has the form [10]: 

𝑇𝑇𝑧𝑧(𝑆𝑆1) = �𝑖𝑖𝑘𝑘
2𝜋𝜋
�
2
∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑅𝑅12

𝑅𝑅12
∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑅𝑅21

𝑅𝑅21
𝑇𝑇𝑧𝑧(𝑆𝑆1∗)𝑑𝑑𝑠𝑠1𝑑𝑑𝑠𝑠2 −

𝑖𝑖𝑘𝑘
2𝜋𝜋 ∫

𝑒𝑒𝑖𝑖𝑘𝑘𝑅𝑅12

𝑅𝑅12
𝐹𝐹2(𝑆𝑆2)𝑑𝑑𝑠𝑠2 + 𝐹𝐹1(𝑆𝑆1), (1) 

where 𝑅𝑅12 = |𝑆𝑆1𝑆𝑆2|  is the distance between integration points over the surface 𝑆𝑆1, of 

the first and second mirror of open OR; 𝑅𝑅21 = |𝑆𝑆2𝑆𝑆1| is the distance between 
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integration points over the surface 𝑆𝑆2 of the second and the first mirrors; 

   𝐹𝐹𝑖𝑖(𝑆𝑆𝑖𝑖) =
𝑑𝑑
∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑅𝑅𝑖𝑖

𝑅𝑅𝑖𝑖𝑉𝑉0
𝑓𝑓(𝜃𝜃)𝑑𝑑𝑣𝑣     (2)  

𝑓𝑓(𝜃𝜃) = 𝑖𝑖 �4𝜋𝜋
𝑘𝑘𝑑𝑑
� 𝑗𝑗(𝜃𝜃) is the source function; 𝑅𝑅𝑖𝑖 = |𝑆𝑆𝑖𝑖𝜃𝜃| is the distance between 

integration points over the surface 𝑆𝑆𝑖𝑖, and the source, 𝜃𝜃. Integration in Eq.(1) is carried 

out over the surfaces of the OR mirrors, and in Eq.(2) integration  is carried out over 

the volume 𝑉𝑉0 occupied by the source.   

The integral equation (1) is obtained in the Kirchhoff’s approximation, which does 

not take into account the current leakage to the shadow side of the mirrors. However, 

when solving the problem, the total field is not divided into resonant and non-resonant 

parts, therefore, the calculation of the field excited in the OR by the source using this 

equation is performed with accounting the non-resonant radiation. Eq.(1) can be solved 

by the iteration method in the same way as Fox and Lee did in [9]. In this case, it is 

also convenient to use the iteration solution procedure, which corresponds to the above-

described step-by-step approach to solving the problem of excitation of resonators by 

arbitrary sources. First, the field distribution (or equivalent surface currents) on one of 

the mirrors and the initial value of the source current (for example, found in the 

approximation of a given field or in a linear approximation) are specified. Then, 

according to Eq.(1), we find the distribution of the field that arises on the surface of 

the same mirror after one reflection from the second mirror. After that calculate the 

distribution of the source current and find the field again, etc. Thus, Eq.(1) in principle 

allows solving the problems of non-relativistic Diffraction Electronics [1] with an 

unfixed field structure taking into account non-resonant radiation. 

From Fredholm’s theory it is known that the solution of Eq. (1) can be represented 

through the resolvent kernel Г(𝑆𝑆1,𝑆𝑆1∗, 𝜆𝜆(𝑘𝑘)): 

𝑇𝑇𝑧𝑧(𝑆𝑆1) = 𝐹𝐹(𝑆𝑆1) + 𝜆𝜆(𝑘𝑘)∫Г(𝑆𝑆1, 𝑆𝑆1∗, 𝜆𝜆(𝑘𝑘))𝐹𝐹(𝑆𝑆1∗)𝑑𝑑𝑠𝑠1    (3) 

where 

𝐹𝐹(𝑆𝑆1) =
𝑑𝑑
−
𝑖𝑖𝑘𝑘
2𝜋𝜋�𝐹𝐹2(𝑆𝑆2)

𝑒𝑒𝑖𝑖𝑘𝑘𝑅𝑅12
𝑅𝑅12

𝑑𝑑𝑠𝑠2 + 𝐹𝐹1(𝑆𝑆1) 

and the resolvent kernel is: 
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Г(𝑆𝑆1, 𝑆𝑆1∗, 𝜆𝜆(𝑘𝑘)) = 𝜆𝜆(𝑘𝑘) 𝐷𝐷
�(𝑆𝑆1,𝑆𝑆1∗,𝜆𝜆(𝑘𝑘))

𝐷𝐷(𝜆𝜆)
,     

where 𝐷𝐷(𝜆𝜆) and  𝐷𝐷�(𝑆𝑆1, 𝑆𝑆1∗, 𝜆𝜆(𝑘𝑘)) are Fredholm determinant and Minor of the Fredholm 

determinant, respectively [10]. 

The zeros of the Fredholm determinant lie in the lower half-plane of the complex 

parameter and coincide with the eigenvalues of the homogeneous Fredholm equation. 

Thus, as in the case of rigorous methods of diffraction theory, the solution of the 

excitation problem is represented as a meromorphic function Eq.(3) of the spectral 

parameter 𝜆𝜆(𝑘𝑘), the poles of which coincide with the spectrum of the OR eigen-

frequencies.  

This means that, applying the Cauchy’s residue theorem to the function 

𝑇𝑇𝑧𝑧(𝜉𝜉)/(𝑘𝑘 − 𝜉𝜉) we obtain expressions for the excited fields in the form of a sum of 

resonant terms and a non-resonant term: 

𝑇𝑇𝑧𝑧𝑛𝑛𝑑𝑑(𝑆𝑆1) =
𝑑𝑑
𝑇𝑇𝑧𝑧(𝑆𝑆1)− 𝐹𝐹(𝑆𝑆1) = ∑ 𝐶𝐶𝑠𝑠(𝑘𝑘)𝐻𝐻𝑠𝑠(𝑘𝑘𝑠𝑠)

𝑘𝑘−𝑘𝑘𝑠𝑠
+ 1

2𝜋𝜋𝑖𝑖 ∮
𝜙𝜙(𝜉𝜉,𝑆𝑆1)
𝜉𝜉−𝑘𝑘

𝑑𝑑𝜉𝜉,𝐶𝐶𝑠𝑠
𝑀𝑀
𝑛𝑛=1   (4) 

where  

𝜙𝜙(𝜉𝜉, 𝑆𝑆1) =
𝑑𝑑
𝜆𝜆(𝜉𝜉)� Г1(𝜉𝜉, 𝑆𝑆1, 𝑆𝑆1∗)𝐹𝐹1(𝑆𝑆1∗)𝑑𝑑𝑠𝑠1,

𝑆𝑆1
 

1
2𝜋𝜋𝑖𝑖 �𝜙𝜙(𝜉𝜉, 𝑆𝑆1)𝑑𝑑𝜉𝜉 =

𝑑𝑑
𝐶𝐶𝑛𝑛(𝑘𝑘)𝑇𝑇𝑛𝑛(𝑘𝑘𝑛𝑛) 

is the residue of the function 𝜙𝜙(𝜉𝜉) at the s-th pole of the resolvent Г(𝑆𝑆1, 𝑆𝑆1∗, 𝜆𝜆(𝑘𝑘)).  

The representation of the solution for equation (1) in the form (4) indicates the 

structure of the excited field and allows us to formulate an algorithm for calculating 

the power of non-resonant radiation. Using the iteration procedure, we solve equation 

(1) and find the total field excited in the OR, which allows us to calculate the total 

radiation losses in the system: OR + source. Then, for the same resonator, the power 

of diffraction losses is determined by solving the problem using the formulas of the 

theory [9-10], which corresponds to the using only one resonant term in Eq.(4). As a 

result of the comparison, we find the power of non-resonant radiation. Note that in this 

case, we can use the expressions for the quasi-eigenfunctions obtained by the parabolic 

equation method, since in the integral equation (1), in fact, the Green's function of the 
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parabolic equation is used.  

Energy Balance Equations for OR with Source 

The exact balance equations for OR are a direct consequence of the complex 

power theorem. In order to write it in a form convenient for the analysis of resonant 

systems, we introduce into consideration energy 𝑊𝑊𝐸𝐸  of electric and energy 𝑊𝑊𝐻𝐻 

magnetic fields in the resonant volume 𝑉𝑉𝑅𝑅:  

𝑊𝑊𝐸𝐸 = (8𝜋𝜋)−1 ∫ |�̄�𝐸|2𝑑𝑑𝑉𝑉𝑅𝑅
𝑣𝑣   and   𝑊𝑊𝐻𝐻 = (8𝜋𝜋)−1 ∫ �𝑇𝑇�⃗ �

2
𝑑𝑑𝑣𝑣𝑉𝑉𝑅𝑅

   (5a) 

and their sum and difference:   

𝑊𝑊 = 𝑊𝑊𝐸𝐸 + 𝑊𝑊𝐻𝐻   and   𝛥𝛥𝑊𝑊 = 𝑊𝑊𝐸𝐸 −𝑊𝑊𝐻𝐻.   (5b) 

By the resonant volume we mean a volume limited by a certain surface that covers 

the OR and the source. In open resonators, the resonant volume should be chosen as a 

volume limited by mirrors and caustic surfaces. We will limit ourselves to the analysis 

of monochromatic fields with time dependence  𝑒𝑒−𝑖𝑖𝜔𝜔𝑑𝑑. Quasi-eigen modes of the OR 

are characterized by complex eigen-frequencies 

𝜔𝜔𝑛𝑛 = 𝜔𝜔𝑛𝑛′ − 𝑖𝑖𝜔𝜔𝑛𝑛′′, (𝜔𝜔𝑛𝑛′,𝜔𝜔𝑛𝑛′′ > 0). 

Taking this circumstance into account when deriving the complex power theorem 

from Maxwell's equations, we obtain the balance equations for the eigen-modes in the 

following form: 

𝜔𝜔𝑛𝑛 ′ = 1
2
∑ "(𝜔𝜔𝑠𝑠)
𝛥𝛥𝑊𝑊(𝜔𝜔𝑠𝑠)

;  𝜔𝜔𝑛𝑛 ′′ = 1
2
∑ ′(𝜔𝜔𝑠𝑠)
𝑊𝑊(𝜔𝜔𝑠𝑠)

    (6) 

where ∑ = ∑ ′ + 𝑖𝑖 ∑ " = 𝑑𝑑
4𝜋𝜋 ∫ �𝐸𝐸

�⃗ ,𝑇𝑇��⃗ �𝑑𝑑𝑠𝑠𝑛𝑛  is complex energy flux (radiant power) through 

a surface 𝑆𝑆, limiting the resonant volume 𝑉𝑉; 𝐸𝐸�⃗  and 𝑇𝑇��⃗  are electric and magnetic fields, 

respectively; 𝑐𝑐 is the speed of light. 

Since for a fixed geometry of an OR its quasi-eigen frequency  𝜔𝜔𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡, then 

from Eq.(6) it follows that the ratio of the real (imaginary) part of the radiation power 

from the volume 𝑉𝑉 to the sum (difference) of the energies of the electric and magnetic 
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fields of the quasi-eigen modes does not depend on the choice of surface 𝑆𝑆. Let us recall 

that 𝜔𝜔𝑛𝑛′ determines the frequency of the quasi-eigen mode oscillations, and 𝜔𝜔𝑛𝑛 ′′ is the 

decrement of quasi-eigen mode attenuation with time due to the radiation of the field 

to infinity. From Eq.(6) it is evident that the rate of change of the instantaneous phase 

of quasi-eigen mode (eigen-frequency 𝜔𝜔𝑛𝑛 ′′ ) is determined by the ratio of their reactive 

characteristics (∑ " and 𝛥𝛥𝑊𝑊), while the attenuation rate of the amplitude of these 

oscillations is determined by the ratio of their active characteristics (∑ ′ и 𝑊𝑊).  

Introducing into consideration the quality factor of quasi-eigen mode according 

to the well-known formula 𝑄𝑄(𝜔𝜔𝑛𝑛) = 𝜔𝜔𝑛𝑛 ′/2𝜔𝜔𝑛𝑛 ′′, from the second formula (6) we obtain  

𝑄𝑄(𝜔𝜔𝑛𝑛) = 𝜔𝜔𝑠𝑠
′𝑊𝑊(𝜔𝜔𝑠𝑠)
∑ ′(𝜔𝜔𝑠𝑠)

      (7) 

Eq.(7) agrees well with the classical definition of the Quality factor of an oscillatory 

circuit or cavity, since (7) represents the ratio of the electromagnetic energy in the 

volume V averaged over the period of oscillation to the energy loss, which in this case 

is determined by the average radiation power from this volume. 

Let us now consider the balance equations for the case of forced oscillations 

excited in the OR by a source (with frequency 𝜔𝜔 ) located inside the resonant volume. 

The balance equations for active components follow from the complex power theorem: 

∑ ′ (𝜔𝜔) = 𝑃𝑃𝑎𝑎(𝜔𝜔)      (8) 

and reactive: 

2𝜔𝜔𝛥𝛥𝑊𝑊(𝜔𝜔) + ∑ " (𝜔𝜔) = 𝑃𝑃𝑟𝑟(𝜔𝜔)     (9) 

power. The following notations are introduced above: 𝑃𝑃(𝜔𝜔) = 𝑃𝑃𝑎𝑎(𝜔𝜔) + 𝑖𝑖 𝑃𝑃𝑟𝑟(𝜔𝜔) is 

complex power of interaction of the source with the OR field; 𝑉𝑉𝑒𝑒 - the volume occupied 

by a source with a current density 𝚥𝚥. The function  2𝜔𝜔𝛥𝛥𝑊𝑊(𝜔𝜔) characterizes the reactive 

power of the excited OR mode.  

Let’s introduce, by analogy with (7), the quality factor of forced oscillations: 

𝑄𝑄(𝜔𝜔) = 𝜔𝜔𝑊𝑊(𝜔𝜔)
∑ ′(𝜔𝜔)

.      (10) 
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Using Eq.(7) and Eq.(10), we may reformulate Eq.(8) and Eq. (9) as follows: 

2𝜔𝜔𝑛𝑛′′𝑊𝑊(𝜔𝜔) = 𝜎𝜎(𝜔𝜔,𝜔𝜔𝑛𝑛)𝑃𝑃𝑎𝑎(𝜔𝜔),      (11) 

2(𝜔𝜔 −𝜔𝜔𝑛𝑛 ′𝛿𝛿(𝜔𝜔,𝜔𝜔𝑛𝑛))𝛥𝛥𝑊𝑊(𝜔𝜔) = 𝑃𝑃𝑟𝑟(𝜔𝜔),    (12) 

where  

𝜎𝜎(𝜔𝜔,𝜔𝜔𝑛𝑛) ≡ 𝜔𝜔𝑠𝑠
′𝑄𝑄(𝜔𝜔)

𝜔𝜔𝑄𝑄(𝜔𝜔𝑠𝑠)
,  𝛿𝛿(𝜔𝜔,𝜔𝜔𝑛𝑛) ≡ −1

2
∑ ′′(𝜔𝜔)

𝜔𝜔𝑠𝑠
′ 𝛥𝛥𝑊𝑊(𝜔𝜔)

   (13) 

With ideal conductivity of metal surfaces, the left-hand side of Eq.(11) can be 

interpreted as diffraction losses of the field energy contained in the resonant volume at 

the excitation frequency. Then the value on the right-hand side of Eq.(11) can be 

considered as that part of the source power which is necessary to compensate for the 

diffraction losses of the resonant oscillation. The remaining power is radiated directly 

into free space or is scattered non-resonantly by the OR mirrors. Thus, the total 

radiation power of the source from the OR can be conditionally divided into two 

qualitatively different parts. One of them is due multiple re-reflections of the field by 

the OR mirrors, it is associated with diffraction losses and has a resonant nature. The 

second part is caused by a single scattering on OR mirrors and direct radiation of the 

source into free space and forms non-resonant radiation. When sweeping the frequency 

of the source in the receiving device located outside the resonant volume, the recorded 

signal will have the form of a narrow peak (the width of which characterizes the quality 

factor of forced oscillations) on a flat pedestal caused by non-resonant radiation.  

The Q-factor (10) of the forced oscillations introduced above, and therefore the 

value of 𝜎𝜎(𝜔𝜔,𝜔𝜔𝑛𝑛), depend not only on the geometry of the OR and the frequency of 

the source, but also on its spatial structure, location and interaction with the OR field. 

Therefore, the value 𝜎𝜎(𝜔𝜔,𝜔𝜔𝑛𝑛) or 𝑄𝑄(𝜔𝜔) can be used as a criterion for the efficiency of 

converting the source energy into the energy of the OR resonant mode. Another 

conclusion that follows from these results is that in the energy balance analysis of 

oscillations excited in an OR with a source located inside the resonant volume, the OR 

and the source should be considered as a single system.  

In the case of high Q-factor oscillations, characterized by the conditions 𝜔𝜔 ≈ 𝜔𝜔𝑛𝑛′ 

and 𝑄𝑄(𝜔𝜔𝑛𝑛) ≫ 1, the source has little effect on the field structure in the OR. If the power 



 

 Modern engineering and innovative technologies                                                                    Issue 37 / Part 1 

ISSN 2567-5273                                                                                                                                                                                   www.moderntechno.de 165 

radiating out of the OR resonant volume is caused only by diffraction losses, then 

𝑄𝑄(𝜔𝜔) ≈ 𝑄𝑄(𝜔𝜔𝑛𝑛) (i.e. 𝜎𝜎 ≈ 1) and ∑ " (𝜔𝜔) ≈ 0. Moreover, in this case 𝜔𝜔2𝑊𝑊𝐻𝐻 ≈ 𝜔𝜔𝑛𝑛2𝑊𝑊𝐸𝐸. 

Taking these relationships into account, Eq.(11) and Eq.(12) may be reduced to the 

known equations for the balance of active and reactive powers for cavities (closed 

resonators), which have the form: 

2𝜔𝜔𝑛𝑛′′𝑊𝑊(𝜔𝜔) = 𝑃𝑃𝑎𝑎(𝜔𝜔) and  2(𝜔𝜔 −𝜔𝜔𝑛𝑛 ′)𝑊𝑊(𝜔𝜔) = 𝑃𝑃𝑟𝑟(𝜔𝜔)   (14) 

Eq.(14) are also used to describe field excitation in OR with high Q-factor. 

It should be noted that since for the forced oscillations the energy flow ∑ ′ does 

not depend on the choice of the surface limiting the volume 𝑉𝑉𝑅𝑅 (see Eq.(5)), then, by 

increasing this volume, the value of Eq.(10) can be made arbitrarily large. However, it 

should be borne in mind that the expression on the left-side of Eq. (11) has the meaning 

of the power of diffraction losses only if the resonant volume 𝑉𝑉𝑅𝑅 is chosen as the 

integration volume in (5). Therefore, the comparison of the Q-factors of forced and 

free oscillations should be carried out only for the resonant volume 𝑉𝑉𝑅𝑅. 

Conclusions 

On the basis of the spectral theory of a two-dimensional OR with ideally 

conducting cylindrical mirrors [7,8], an expression for the Green's function of such OR 

was derived in [3-5]. A similar approach to the solution of excitation problems is also 

developed for quasi-optical OR described in terms of Fredholm’s integral equations. 

The general structure and character of the dependence of the resonant and non-resonant 

parts of the field of OR excited in the vicinity of a single OR resonant (quasi-eigen) 

mode are obtained as a functions of the source frequency and Q-factor of this mode. A 

new form of balance equations of active and reactive powers in the system "OR + 

Source" is proposed, which is convenient for analyzing non-resonant radiation. A 

formal transition to the balance equations of the traditional theory of excitation of OR 

quasi-eigen mode having a high Q-factor is shown. A new method is proposed for 

calculating the coefficient of conversion of the radiation energy of a given source into 

the energy of the resonant (quasi-eigen) mode of the OR, which consist in calculating 

the ratio of the Q-factor of the forced oscillations to the diffraction Q-factor of the OR 
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quasi-eigen mode. In the same approximation, equations were formulated and 

corresponding algorithms for calculating EM fields in the OR with diffraction grating 

were elaborated, which are suitable for describing self-oscillatory regimes in 

Diffraction Electronics [1] devices with a non-fixed field structure and which account 

non-resonant radiation. The suggested theory may be applied for design of active and 

passive elements of microwave, terahertz and photonic systems based on quasi-optical 

ORs. 
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