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Abstract. This study is devoted to the theoretical analysis of the kinetic features of Lamb wave
propagation in laminar composites. In particular, the dispersion dependences for the group and
phase velocities, as well as the characteristic wave curves, were analyzed. The theoretical analysis
was based on the assumption of the existence of multiple Lamb wave modes. Numerical solutions for
an infinite number of possible wave modes were obtained based on the three-dimensional (3-D)
theory of elasticity. Transcendental equations, which are the governing equations of the exact
dispersion relations, were obtained. For symmetric laminates, a numerical calculation technique is
proposed based on the possibility of imposing boundary conditions on the middle plane and the upper
surface to separate symmetric and antisymmetric wave modes. A new semi-exact method for
calculating Lamb wave group velocities in composites is developed. The analysis of the angular
dependence of Lamb wave propagation was performed for the characteristic wave curves of the phase
and group velocities. A detailed calculation was performed for the dispersive and anisotropic
behavior of Lamb waves in two different types of symmetric laminates. The kinetics of Lamb wave
propagation suggested the presence of symmetric and antisymmetric wave modes with narrow-band
signals. In addition, the Gabor wavelet transform was used to extract the group velocities from the
Lamb wave propagation time. The numerical values of group velocities obtained on the basis of the
developed technique are in good agreement with data from the three-dimensional elasticity theory.
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Introduction.

Modern composite materials are quite often used in a wide variety of industries.
There are several reasons for the popularity of composites. These include high specific
rigidity, specific strength, and fatigue strength. Fiber-reinforced composite materials,
which have high mechanical strength, have naturally anisotropic characteristics, since
such materials are made from carbon fibers and a matrix. On the other hand, composite
materials have a high probability of developing defects due to complex manufacturing
processes, unexpected external influences, and deterioration of mechanical properties
during operation [1, 2]. An effective technique for performing inspection of large
structures, including wave propagation over several meters depending on the material
and geometry of the structure in question, is Lamb wave testing [3, 4]. High-speed
monitoring of large structures such as pipes and trusses is not possible without the use

of the basic equation for Lamb wave packets. It should be noted that the experimental
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ultrasonic test tests a local part of the structure containing composite inserts and
elements only in the immediate vicinity of the ultrasonic wave sources. Therefore, such
a technique requires the placement of wave sources over the entire surface of a large
structure to perform a structural test, and the results are usually displayed as a C-scan
[5, 6]. This testing process can be laborious and time-consuming. The advantage of
using Lamb waves is the ability to simultaneously monitor large surfaces of structures.
However, such methods are more complex than conventional ultrasonic testing, since
Lamb waves have dispersive characteristics, 1.e. the wave speed varies depending on
the frequency, modes and plate thickness [7, 8]. Experimentally measured group and
phase velocities of symmetric and antisymmetric Lamb waves in composite materials
with anisotropic characteristics do not coincide with theoretical values, in particular,
group velocities, which are calculated using the Lamb wave dispersion equation [9].
The reason for the existence of such a difference is the presence of a non-zero angle
between the direction of the group velocity and the direction of the phase velocity in
anisotropic materials. The standard technique involves calculating the values of group
velocities of symmetric modes from the dispersion curves of the Lamb wave in an
anisotropic plate of a laminar composite without taking into account the direction and
magnitude of propagation of the wave packet.

This study analyzes the difference between the experimentally measured Lamb
wave group velocities and the theoretical group velocities in laminar composite
materials. In isotropic materials, Lamb waves can propagate in a circular pattern in the
same direction of the wave vector and the direction of the energy flow. However, the
direction of the wave vector in a composite plate having anisotropic characteristics due
to the fiber arrangement is different from the direction of the energy flow except for
the main axis [10]. It is necessary that wave propagation in composite materials with
anisotropic characteristics be considered not only in terms of direction but also in terms
of amplitude. When taking into account the difference in amplitudes, it is necessary to
take into account that the fundamental symmetric mode SO is characterized by reduced
dispersion values for small values of the frequency multiplied by the thickness value.

Experiments on the analysis of the SO mode in unidirectional laminated composite
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plates revealed a difference in the directions between the group velocity and the phase
velocity. In addition, it was found that the direction of the energy flow coincides with
the direction of the fibers of the laminated composites, with the exception of the
perpendicular direction of the fibers. Theoretical analysis showed that the symmetric
mode SO of the group velocity for low frequencies can be used as a phase velocity in
the region of low dispersions. The numerical values of the group velocities obtained as
a result of processing the diagrams for the reciprocal values of the phase velocities are
in good agreement with the measured values of the group velocity in unidirectional
composite plates. In this study, the SO mode dispersion properties of phase velocity are
analyzed using Lamb wave equations for unidirectional, bidirectional and quasi-
isotropic composite plates. The characteristic parameters of phase velocity dispersion
are used to calculate the theoretical group velocity in the volume of the laminar
composite. The retardation surface, which is related to the inverse of the phase velocity,
is used to calculate the magnitude and direction of the group velocity. A rescaled group
velocity curve, i.e., a curve from which the magnitude and direction of the group
velocity are re-modified from the retardation surface, is obtained. The difference
between the measured group velocities and the calculated group velocity from the
dispersion curves is due to the direction and magnitude of the wave vector and the
direction of the energy flow.

Materials and results

The numerical calculation methodology for Lamb wave propagation in laminated
composite structures assumes that the interfaces between layers are ideally coupled.
For each layer, the displacement components in the corresponding z-axis equation must
be modified into exponential forms to account for the inhomogeneity of the multilayer
laminate

U = Adexp(i&x), V=Bexp(ify), W=-iCexpl(i£z), (1)

where
U is the displacement in the x direction (control coefficient 4);
V' is the displacement in the y direction (control coefficient B);

W is the displacement in the z direction (control coefficient -iC);
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z 1s the coordinate perpendicular to the fixed layer of the composite;
§ 1s the fixed variable.
The general solution in each lamina is
{U,V,W}: exp {i [(kxx + kyy)— a)t]} ZAJ. {I,Rj,Sj}exp(i,sz), (2)

J
where

o is the angular frequency;
kx, ky are the projections of the wave vector onto the Cartesian x and y axes;
R, S are the characteristic coefficients of the layer.

Symmetrical and asymmetrical Lamb wave modes in conventional laminates
cannot be separated. It should be noted that symmetrical laminates are used in
engineering practice when designing composite structures. A reliable method for
separating the two types of wave modes is to generate boundary conditions on both the
upper and middle planes of the surface. For the upper boundary of the laminate, the

boundary conditions can be written as follows

0, 3)

{GZ’TyZ’TXZ}‘2=h/2 =

where

G is the normal mechanical stress;

T 1s the tangential mechanical stress;
h is the layer thickness.

The symmetry conditions for the entire laminate allow only half of the entire
sample to be analyzed. In a subsequent step, the following conditions are imposed on
the stress and displacement components in the mid-plane for symmetric modes

{u,u,az}{zzo =0, 4)

The implicit functional form G (w, k) = 0, or G (o, k, ) = 0 can be used to
formulate the dispersion relation between ® and k. This dispersion relation can be
explicitly solved in the form of real roots ® = W (k), or ® = W (k, O).

The number of possible solutions with different functions W tends to infinity.
Such solutions correspond to different wave modes. The phase velocity vector for plane

modes is defined as ¢, = (w/k)-(k/|k|)=(w/k*)k. Therefore, its magnitude is ¢, = ®/k. The
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set of all statistical samples k from the origin for ¢, at a given frequency forms the so-
called velocity curve. The radius vectors of the velocity curves in the direction of a
given k represent the admissible dispersion of the phase velocity of the different wave
modes.

A set of points in phase space or a slowness curve can be defined by fixing the
slowness vector s = k/o. The characteristics of the set of phase points can be simply
formed from the velocity curve by geometric inversion, i.e. by mapping through the
inverse radius.

The directions of the slowness and phase velocity vectors coincide. Thus, the
inverse phase velocities can be measured from the origin to the slowness curves. The
distance traveled per unit time is defined as the phase velocity. On the other hand, time
as slowness is numerically equal to the time required to travel a unit distance. For
volume (non-dispersive) waves, it is convenient to use the slowness curve. The reason
for this is the fact that this group velocity curve does not depend on x.

In isotropic materials, the phase velocity depends only on the magnitude of the
wave vector k. The phase velocity of anisotropic materials depends on the wave vector
k, its magnitude, and the direction in which the wave propagates. For experimentally
measured wave packets, the phase velocities are measured by tracking the wave peaks.

The numerical value for the group velocity can be determined by tracking the
wave packet envelopes, namely ¢, = gradi = 0W/ok. Provided that the closed form

of the implicit function G has been previously determined, the group velocity can also

8G) (8GY "
{5 ) ”

The gradient W (gradx W) in the polar coordinate system has a radial component

be calculated as

OW/dk in the direction k and an angular component OW/k00, perpendicular to k. After

the coordinate transformation, the group velocity in the Cartesian coordinate system is

ow
c cos@ —smnb|| A,
equal to L= Ok , 6
1 {cgy} Lin@ cos@} ow ©)
koo
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where indexes “x” and “y” represent the components in x- and y-axes, respectively.

The magnitude and direction of group velocity represents this system of equations

“1Cg

Cq = c§x+c§y, 0, =tan ——. (7)
c
ox
The skew angle 0 or steering angles defined as
0=0,-0". (8)

It makes sense to introduce the concept of a wave curve (or wave front curve) as
the geometric locus of the group (radial) velocity vectors along all choices ¢, from the
origin at a given frequency. The radius vector connecting the origin (or source point)
with a point on the wave curve is numerically equal to the distance traveled by the
elastic disturbance per unit time.

In other words, the geometric concept of a wave curve essentially comes down to
the concept of a geometric locus of points (or wave front) recorded per unit time by a
disturbance emitted by a point source acting through the origin at time ¢ = 0. Wave
curves are of great importance in detecting mechanical damage.

The dispersion relation written for each Lamb wave mode can be expressed as an
explicit function of W (k; h). This function is associated with a conical surface in a
three-dimensional domain. In addition, the deceleration curve W (k; 0) = ¢ is
geometrically a level surface of W (k; 0). Differentiating both sides of the equation with

respect to 0, the following relation can be obtained

ow dk oW _
ok d6 66

As an example of the use of numerical and symbolic methods for recording

0, ©)

mechanical damage in a composite material, we can consider the results of the Lamb
wave propagation analysis in graphite/epoxy resin AS4/3502. Two laminates are used
in the tests: L; ([+45¢/45¢6]s) and L, ([+45/45/0/90];). The numerical results consist of
dispersion curves (phase and group velocities) and three characteristic wave curves in
two different types of laminates. The characteristic dispersion curves are illustrated in

Fig. 1, 2. The dimensionless frequency f4 = wh/cr and the dimensionless velocity vy =
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cp/ct and vy = cg/er are used to normalize the physical frequency and velocity,

respectively. In addition, cr is defined as (G12/p)°” is the velocity of the transverse (in-

plane shear) wave in the plate.
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Figure 1. Dispersion curves va1 = vai (fa) of Lamb waves along 6 = 45°

(symmetric modes)

The group velocity of the SHO and SO modes has pronounced dispersion
characteristics. However, even greater dispersion is observed for symmetric modes in
the quasi-isotropic laminate [+45/45/0/90]s. In contrast, the dispersion of the A0 mode
in both laminates is weaker beyond wh/ct = 1. This feature is effectively used for
structural monitoring of laminar composites.

Summary and conclusions.

The calculation method of the phase and group velocity kinetics of the laminated
composite allowed us to obtain a general control equation that relates the mechanical
normal and tangential stresses for each layer. The dispersion relations are written for
the middle layer of the laminate sample for the case of propagation of both symmetric
and antisymmetric modes of the Lamb wave packet. The observed dispersion

dependences of the phase velocity were obtained as a result of numerical analysis of
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the velocity curve. The analysis showed that for non-isotropic composites, the
characteristic value of the phase velocity depends both on the amplitude value of the
wave vector and on the direction of propagation of the symmetric modes of the Lamb

waves.
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