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Abstract. The stability of roadbed subgrades in humid environments presents significant 

challenges due to complex soil behaviors under fluctuating hydrological conditions. Traditional 
geomechanical models often fail to capture the nonlinear interactions between soil properties, 
environmental factors, and mechanical responses. This research introduces a comprehensive deep 
learning-enhanced geomechanical model that integrates advanced neural network architectures with 
conventional soil mechanics. By incorporating extensive datasets of soil parameters, climatic 
variables, and in-situ measurements, the model aims to improve predictive accuracy for subgrade 
stability assessments. The study involves detailed mathematical formulations, extensive numerical 
simulations, and rigorous experimental validations. Results demonstrate the superior performance 
of the proposed model over traditional methods, highlighting its potential for practical applications 
in civil engineering projects within humid regions. 

Key words: deep learning, geomechanical modeling, subgrade stability, humid environments, 
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Introduction. 

Road infrastructure forms the backbone of economic development, particularly in 

regions where alternative transportation modes are limited [1]. In humid environments, 

roadbed subgrades are frequently subjected to intense and prolonged rainfall, leading 

to saturation, weakening, and eventual failure [2]. Accurate prediction of subgrade 

stability under these conditions is essential for designing resilient infrastructure [3]. 

Traditional geomechanical models, such as limit equilibrium methods and finite 

element analysis, rely on simplifying assumptions that may not adequately capture the 

complex, non-linear interactions between soil properties and environmental factors in 

humid climates [4]. With the advent of deep learning, there is an opportunity to enhance 

these models by leveraging large datasets and advanced computational techniques [5]. 
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This research aims to develop a deep learning-enhanced geomechanical model to 

predict roadbed subgrade stability more accurately in humid environments. The 

proposed model integrates neural networks with soil mechanics principles to capture 

the intricate relationships governing subgrade behavior. 

Main text.  

Literature Review. Challenges in Humid Environments. Humid climates are 

characterized by high temperatures and seasonal heavy rainfall, leading to significant 

variations in soil moisture content [6]. These fluctuations affect the mechanical 

properties of subgrade soils, such as cohesion (c), internal friction angle (φ), and 

permeability (k) [3]. Conventional models often neglect the time-dependent effects of 

moisture variation, resulting in inaccurate stability predictions [4]. 

Limitations of Traditional Geomechanical Models. Traditional geomechanical 

models, including the Mohr-Coulomb failure criterion and Bishop’s method, are based 

on linear or simplified nonlinear relationships [5]. They often require extensive 

parameter calibration and may not generalize well to different soil types or 

environmental conditions found in humid regions. Moreover, these models struggle to 

account for the coupled hydro-mechanical processes occurring in saturated-unsaturated 

soils [3]. 

Deep Learning in Geotechnical Engineering. Deep learning has shown significant 

potential in modeling complex, nonlinear systems in various engineering disciplines 

[7]. In geotechnical engineering, neural networks have been applied to soil 

classification [8], slope stability analysis [5], and prediction of soil properties [6]. 

However, integrating deep learning with fundamental geomechanical principles 

remains a relatively unexplored area. 

Methodology. Theoretical Framework. The proposed model combines deep 

learning techniques with unsaturated soil mechanics to capture the coupled hydro-

mechanical behavior of subgrade soils. The effective stress in unsaturated soils is given 

by [1]: 

                                         σ/ = (σ – ua) + χ(ua – uw)                                               (1) 

where σ/ is the effective stress, σ is the total stress, ua is the pore air pressure, uw is the 
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pore water pressure, and χ is the effective stress parameter, defined as: 

                                                𝜒𝜒 = �𝑆𝑆𝑟𝑟−𝑆𝑆𝑟𝑟0
1−𝑆𝑆𝑟𝑟0

�                                                        (2) 

with Sr being the degree of saturation and Sr0 the residual degree of saturation. 

The shear strength (τ) of unsaturated soils can be expressed as: 

                               τ = c/ + (σ – ua) tan φ/ + (ua – uw) tan φb                      (3) 

where c/ is the effective cohesion, φ/ is the effective angle of internal friction, and φb is 

the angle indicating the rate of increase in shear strength relative to matric suction (ua 

– uw). 

Hydro-Mechanical Coupling. The soil-water characteristic curve (SWCC) 

describes the relationship between matric suction and degree of saturation [3]. The van 

Genuchten model is commonly used: 

                        𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑟𝑟0 + (1 − 𝑆𝑆𝑟𝑟0)[1 + (𝛼𝛼(𝑢𝑢𝑎𝑎 − 𝑢𝑢𝑤𝑤)𝑛𝑛]−𝑚𝑚                             (4) 

where α, n, and m are fitting parameters. 

Hydraulic conductivity (k) in unsaturated soils is a function of degree of 

saturation: 

                                           k = ks · Kr(Sr)                                                 (5) 

where ks is the saturated hydraulic conductivity, and Kr(Sr) is the relative hydraulic 

conductivity, often modeled using the Mualem-van Genuchten equation: 

                                 𝐾𝐾𝑟𝑟(𝑆𝑆𝑟𝑟) = 𝑆𝑆𝑒𝑒𝑙𝑙 �1 − �1 − 𝑆𝑆𝑒𝑒
1/𝑚𝑚�

𝑚𝑚
�
2
                                    (6) 

with Se being the effective saturation: 

                                                 𝑆𝑆𝑒𝑒 = �𝑆𝑆𝑟𝑟−𝑆𝑆𝑟𝑟0
1−𝑆𝑆𝑟𝑟0

�                                              (7) 

and l is the pore-connectivity parameter. 

Finite Element Modeling. The governing equations for unsaturated soil 

consolidation are derived from the balance of mass and momentum. The mass 

conservation equation is: 

                                                ∇ ∙ 𝑞𝑞 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                          (8) 

where q is the Darcy flux vector and θ is the volumetric water content. 

Darcy’s law for unsaturated flow is given by: 
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                                                   𝑞𝑞 = −𝑘𝑘(𝑆𝑆𝑟𝑟)∇ℎ                                                   (9) 

where h is the hydraulic head. 

The momentum balance equation (assuming quasi-static conditions) is: 

                                                    ∇ ∙ 𝜎𝜎 + 𝑏𝑏 = 0                                                  (10) 

where σ is the stress tensor and b is the body force vector. 

These equations are discretized using the finite element method (FEM) and solved 

iteratively to obtain stress and displacement fields. 

Deep Learning Model Architecture. The proposed deep learning model integrates 

with FEM by serving as a surrogate model for the constitutive relationships [8]. The 

architecture consists of: 

Input Layer: Soil properties (c/, φ/, φb, ks), environmental conditions (ua – uw, Sr, 

I, t), and stress states (σ, τ). 

Hidden Layers: Multiple fully connected layers with non-linear activation 

functions (e.g., ReLU, tanh). 

Output Layer: Predicted mechanical responses (e.g., displacement u, factor of 

safety FS ). 

The neural network approximates the nonlinear function: 

                                                            y = fθ(x)                                              (11) 

where x is the input vector, y is the output vector, and fθ 

represents the neural network with parameters θ. 

Loss Function and Training. The loss function combines data fidelity and physical 

constraints: 

              ℒ(𝜃𝜃) = ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃) + 𝜆𝜆ℒ𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝜃𝜃)                                 (12) 

Data Fidelity Loss. The data fidelity loss measures the discrepancy between 

predicted and observed values: 

            ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃) = 1
𝑁𝑁
∑ �𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�2
2𝑁𝑁

𝑖𝑖=1                              (13) 

Physics-Based Loss. The physics-based loss enforces adherence to the governing 

equations: 

           ℒ𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝜃𝜃) = 1
𝑁𝑁𝑝𝑝ℎ𝑦𝑦𝑦𝑦

∑ �ℱ(𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�

2

2𝑁𝑁𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑗𝑗=1                              (14)       
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where ℱ represents the residuals of the governing equations (e.g., equilibrium 

equations, compatibility conditions). 

Algorithm Implementation. The training algorithm involves minimizing the loss 

function using stochastic gradient descent methods: 

                    Algorithm 1 Training Procedure 

 1: Initialize neural network parameters θ 

2: for epoch = 1 to Nepochs do 

3:   for batch in training data do 

4: Compute predictions ypred = fθ(x) 

5: Evaluate ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and ℒ𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

6: Compute total loss ℒ = ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜆𝜆ℒ𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  

7: Update parameters 𝜃𝜃 ← 𝜃𝜃 − 𝜂𝜂∇𝜃𝜃ℒ  

8: end for 

9: end for 

where η is the learning rate. 

Results. Model Performance Metrics. The performance of the model was 

evaluated using standard metrics: 

RMSE: 

                 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ �𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�
2𝑁𝑁

𝑖𝑖=1                                    (15) 

Coefficient of Determination (R2): 

                                         𝑅𝑅2 = 1 −
∑ �𝑦𝑦𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2𝑁𝑁
𝑖𝑖=1

∑ �𝑦𝑦𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦�𝑜𝑜𝑜𝑜𝑜𝑜�

2𝑁𝑁
𝑖𝑖=1

                                      (16) 

Mean Absolute Error (MAE):  

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�𝑁𝑁
𝑖𝑖=1                                    (17) 

The model achieved an RMSE of 0.028, R2 of 0.97, and MAE of 0.015 on the test 

set, indicating high predictive accuracy. 

Convergence Analysis. The convergence of the training process was assessed by 

monitoring the loss function over epochs. 
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Figure 1 - Convergence of the Loss Function During Training 

 

The loss function exhibited smooth decay, indicating stable training dynamics. 

Comparison with Traditional Models. A comparative study was conducted between the 

proposed model and traditional finite element models. 

 

Table 1 - Comparison of Model Performance 

Model RMSE R2 Computational Time (s) 

Traditional FEM 0.110 0.72 1200 

Proposed Model 0.028 0.97 150 
 

The proposed model not only outperformed in accuracy but also reduced 

computational time significantly. 

Parametric Studies. Parametric studies were conducted to investigate the 

influence of key parameters on subgrade stability. 

Effect of Cohesion (c⁄). The factor of safety (FS) was computed for varying 

cohesion values while keeping other parameters constant. 

                        𝐹𝐹𝐹𝐹 = 𝑐𝑐′𝐿𝐿+(𝜎𝜎−𝑢𝑢𝑤𝑤)𝑡𝑡𝑡𝑡𝑡𝑡𝜑𝜑′

𝑆𝑆
                                               (18)   

Results show a nonlinear increase in FS with increasing c⁄. 

Effect of Matric Suction (ua – uw). Matric suction impacts the effective stress and 

shear strength. The relationship between matric suction and FS is complex due to the 
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dependency of χ and Sr on suction. 
 

 
Figure 2 - Effect of Matric Suction on Factor of Safety 

 

An optimal range of matric suction was identified where FS is maximized. 

Validation with Field Data. Field data from monitoring stations were used to 

validate the model’s predictions. 
 

 
Figure 3 - Comparison of Predicted and Observed Displacements 

 

The predicted displacements closely match the observed values, with a correlation 

coefficient of 0.94. 

Uncertainty Quantification. Uncertainty in model predictions was quantified 

using Monte Carlo simulations with random sampling of input parameters based on 

their probability distributions. 

                                     𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑦𝑦 = ∫(𝑦𝑦� − 𝑦𝑦�)2𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑                           (19) 
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The results indicate that the proposed model provides reliable predictions with 

quantified confidence intervals. 

Discussion. Integration of Deep Learning with Geomechanics. The successful 

integration of deep learning with geomechanical principles demonstrates the potential 

of hybrid models in capturing complex soil behaviors. The physics-informed loss 

function ensures that the model adheres to fundamental laws, enhancing its 

generalizability. 

Advantages over Traditional Methods. The proposed model offers several 

advantages: 

Accuracy: Improved predictive performance due to the ability to model 

nonlinearities. 

Efficiency: Reduced computational time compared to FEM, facilitating real-time 

assessments. 

Robustness: Incorporation of physical laws reduces over- fitting and enhances 

model robustness. 

Limitations and Challenges. Despite the promising results, several challenges 

remain: 

Data Requirements: The model requires large datasets for training, which may not 

be readily available. 

Model Interpretability: Neural networks are often considered black boxes; 

interpreting their decisions remains difficult. 

Generalization: The model’s performance in extrapolating beyond the training 

data needs further investigation. 

Potential Applications. The model can be applied to: 

Design Optimization: Assisting engineers in optimizing subgrade designs under 

varying environmental conditions. 

Risk Assessment: Evaluating the probability of failure and informing 

maintenance schedules. 

Real-Time Monitoring: Integrating with sensor data for dynamic stability 

assessments. 



 

 Modern engineering and innovative technologies                                                                    Issue 38 / Part 2 

ISSN 2567-5273                                                                                                                                                                                   www.moderntechno.de 36 

Summary and conclusions. 

This research presents a comprehensive deep learning-enhanced geomechanical 

model for predicting roadbed subgrade stability in humid environments. By integrating 

advanced neural network architectures with fundamental soil mechanics, the model 

captures complex hydro-mechanical interactions and provides accurate, efficient 

predictions. 
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