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Abstract. Computing the argument of a complex number is fundamental to signal processing,
navigation, and computational geometry. The standard atan2 function, while numerically efficient,
produces cumbersome piecewise expressions in symbolic computation systems, complicating
automatic differentiation, integration, and code generation. We present a family of analytically
continuous functions — Atand4, Asin4, and Acos4 — that provide closed-form alternatives to classical
inverse trigonometric functions. These functions combine analytical expressiveness with numerical
efficiency, being expressed entirely through elementary algebraic operations without explicit
piecewise definitions. We rigorously prove the equivalence between Atan4 and atan2(sinx,cos x),
analyze its analytical properties, and present optimized implementations including branchless scalar
and vectorized (SIMD) algorithms. Benchmarks demonstrate that optimized scalar Atan4 achieves
0.94x the performance of atan2, while vectorized implementations provide more than threefold
speedup in mass data processing. Application to phase analysis of frequency-modulated signals
demonstrates practical advantages in symbolic manipulation and automatic code generation. The
systematic approach extends naturally to Asin4 and Acos4, making this function family a promising
addition to mathematical libraries for specialized tasks requiring both analytical rigor and
computational efficiency.

Key words: argument computation, atan2, Atand, inverse trigonometric functions, symbolic
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Introduction

Computing the argument of a complex number is a fundamental operation in
engineering and scientific applications, including signal processing, radar systems,
navigation, quantum mechanics, and computational geometry. The standard function
for this purpose is atan2(y, x), developed in the 1960s-1970s and now included in
virtually all programming languages and mathematical libraries [1], [2]. Its advantages
are well established: correct operation in all four quadrants, numerical stability when
x =~ 0, and high performance through hardware and library-level optimizations.

However, atan2 has a piecewise-defined structure that makes it inconvenient for

symbolic computation systems. When used in automatic differentiation, integration, or
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expression simplification, atan2 typically generates complex conditional expressions
requiring additional processing. Classical sources such as Numerical Recipes [2], along
with comprehensive treatments by Higham [3] and foundational work by Knuth [8],
discuss the numerical efficiency of atan2 but acknowledge challenges in symbolic
contexts. Modern computer algebra systems such as SymPy [4] support atan2 but
represent it using piecewise-defined expressions, complicating automatic
simplification. In signal processing applications — particularly FM signal phase
analysis as detailed by Oppenheim and Schafer [5] and Haykin [6] — atan2 is widely
used for instantaneous frequency estimation, yet its piecewise nature hinders analytical
derivations.

To address this limitation, we propose a family of functions — Atan4, Asin4, and
Acos4 — that: (1) preserve the numerical stability and correctness of atan2; (2) possess
closed-form analytical representations; (3) enable efficient symbolic transformations
and automatic code generation; (4) achieve performance comparable to or exceeding
atan2 in vectorized computations. This paper focuses primarily on Atan4 as the most
practically significant member of the family, while demonstrating the systematic nature
of the approach through its natural extension to Asin4 and Acos4.

The remainder of this paper is organized as follows. Section II defines the Atan4
function and Section III proves its equivalence to atan2. Section IV analyzes analytical
properties. Sections V-VI present implementation strategies and regularization
techniques. Section VII presents performance benchmarks, Section VIII demonstrates
application to FM signal analysis, and Sections IX-X provide discussion and
conclusions.

I1. Definition of the Atan4 function

We introduce the function Atan4(x) as a closed-form analytical alternative to atan2:

sin x sign(sin x)
Atan4(x) = arctan ( ) +m [1 -
cosx 2

(1 + sign(cosx))
where
t+0

t
sign(t) = {m’
0, t=0
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is the standard sign function. The function is expressed entirely through elementary
operations (arctan, sin, cos, sign), providing a compact analytical representation.
The range of Atan4 is [0, 2m) for x € R. To convert to the standard principal value

range (—m, ], we define:

M) = {pcanito 2, it At =

This mapping ensures full consistency with the classical definition of the
argument of a complex number [5], [6].

Alternative form for symbolic computation. The sign function can be expressed

directly through trigonometric functions:

sin x 1 sinx CcoS X
Atan4(x) = arctan( ) +7 [1 — —— (1 + )]
COS X 2 |sin x| |cos x|

This representation preserves algebraic structure in computer algebra systems, as

|t| is processed as \/p rather than expanding into piecewise definitions.
Extension to Asin4 and Acos4. The approach extends systematically to other

inverse trigonometric functions:

T
Asin4(x) = signg(cos x) - arcsin(sinx) + ) [1 — signg(cosx)] - signg(sin x)

T
Acos4(x) = sign.(sinx) - arccos(cos x) + > [1 — [sign,(sinx)|][1 — sign,.(cos x)]

All three functions are mathematically equivalent: Atan4(x) = Asin4(x) =
Acos4(x) = x (mod 2m). From the standpoint of numerical stability and performance,
Atan4 is preferable in most cases, as arctangent is numerically stable, has an
unrestricted domain, and is highly optimized in mathematical libraries.

II1. Equivalence of Atan4 and atan2

Theorem 1. For any real x, the following equality holds:

Atan4,.(x) = atan2(sin x, cos x)

Proof. We verify equivalence by examining each quadrant separately.

Case 1: First quadrant (cosx > 0, sinx > 0)

In this region,

arctan(sin x/cos x) = arctan(tan x) = x (modulo 27 for x reduced to [0,/
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2]).

The correction term evaluates to:

[l —%(1)(1 +1)]=n[1-1]=0

Thus, Atan4(x) = x, which coincides with atan2(sin x, cos x).
Case 2: Second quadrant (cosx < 0,sinx > 0)
Here, arctan(sin x/cos x) yields x — 7 (the principal value). The correction term

evaluates to:

1
n[l —E(l)(l — 1)] =7
Thus, Atan4(x) = (x — m) + © = x, matching atan2.
Case 3: Third quadrant (cosx < 0,sinx < 0)

The principal value is again x — m. The correction term evaluates to:
1
|1 —E(—l)(l —-Df=nr

Result: Atan4(x) = x. After conversion to (—m,m], this equals
atan2(sin x, cos x).
Case 4: Fourth quadrant (cosx > 0,sinx < 0)

Principal value: arctan(sin x/cos x) = x. The correction term evaluates to:
1
m|1l _E(_l)(l +1)|=2m

Result: Atan4(x) = x + 2m. After mapping to (—m, ], this yields x, as required.

Boundary points (x =0, n/2, m, 3m/2): Values at these points, obtained
through one-sided limits, coincide with atan2 by continuity.

Unlike the standard atan2 function, the proposed Atan4 is not defined piecewise
but expressed in closed-form, facilitating symbolic manipulation.

IV. Analytical properties

1. Motivating example: Symbolic differentiation

To illustrate the advantage of closed-form representation, consider differentiating
the phase function in SymPy. For atan2(sin(x), cos(x)), this produces a piecewise

expression requiring simplification to reduce to unity. In contrast, differentiation of
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Atan4(x) using the regularized form yields directly: 1. This demonstrates the practical
advantage of Atan4 for symbolic computation.

2. Continuity and differentiability

The Atan4 function is continuous over R except at points where sign(0) is
undefined (sinx = 0 or cosx = 0). These discontinuities are eliminated through
regularization (Section VI). Within each quadrant, Atan4(x) locally coincides with the

linear function x + C, where C depends on the quadrant. Hence:

d
aAtanéL(x) =1

for all x except at quadrant boundaries. At boundaries, one-sided limits coincide,
making the function piecewise smooth for practical purposes.

3. Periodicity and stability

Atan4 is 2n-periodic, consistent with atan2 behavior and the classical definition
of argument. For large |x|, reduce the argument modulo 2n (using fmod or equivalent)
to prevent numerical error accumulation.

V. Numerical implementation

1. Branchless implementation

To eliminate conditional jumps, compute sign arithmetically. The branchless
computation paradigm, extensively analyzed in the literature [7], enables elimination
of conditional branches and improved efficiency of SIMD-based implementations:

sign(t) =(t>0)—(t<0)
This enables branchless evaluation:

sin x sign(sin x)
Atan4(x) = arctan ( ) +m [1 -
COS x 2

where sign is computed without branching using comparison operators.

(1 + sign(cos x))

2. Vectorized (SIMD) implementation

Using AVX2 or AVX-512 enables processing 4-8 elements simultaneously: load
vector x, compute sin(x) and cos(x) vectorially, evaluate arctan vectorially, compute
sign using vectorized comparisons, and add correction term. This approach provides
approximately 3 — 8 X acceleration compared to element-wise atan2, depending on

hardware and compiler optimizations. Performance gains are architecture-specific and
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depend on data alignment, compiler optimization level, and availability of vectorized
math libraries.

VI. Regularization of the sign function

The function sign(t) = t/|t| is undefined at t = 0. In practical computations, this
discontinuity can cause numerical instability when processing noisy data, performing
numerical integration, or applying gradient-based optimization methods where
continuity and differentiability are essential.

Regularization principle. To eliminate the discontinuity at zero, we introduce a

regularized sign function:

e>0

t
sign(t) = Nregwet
As € = 0, this function converges pointwise to the classical sign(t). Unlike the
discontinuous classical function, sign_,(t) provides a smooth transition between —1
and +1 near zero. The corresponding substitutions for trigonometric expressions are:

sin(x) sin(x) cos(x) cos(x)
: = , =
Isin(x)| ~ +/sinZx + €2 lcos(x)|  Vcos?x + €2

Properties. For any € > 0, sign_.(t) is continuous and infinitely differentiable

over its entire domain. The parameter € controls the transition width. The regularized
function has a continuous derivative:
£2

d .
_slgng(t) = —(tz T 82)3/2

dt
with maximum derivative at t = 0 equal to 1/¢ and decay rate ~1/t* for large |t|. This
approach ensures numerical stability against rounding and overflow errors, as
discussed in the numerical analysis literature [3], [9], [10].

Application in Atand. The fully regularized Atan4 function is:

nx

si 1
Atan4.(x) = arctan <c ) +m {1 — Esigng (sinx)[1 + sign.(cos x)]}

oS X

This formulation is globally continuous on R, infinitely differentiable on R, and
converges to Atan4 as € — 0.
Practical recommendations. For double precision (float64), use e~107"2 to

1078; for single precision (float32), use e~107° to 10~*. In symbolic computation, use
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non-regularized form and apply regularization as a limiting operation (¢ — 0) in final
analytical results. In numerical optimization, always use regularized form to ensure
continuous gradients.

VII. Performance benchmarks

Experimental setup: Intel Core i7-10700K, GCC 12 with —03 optimization, 10°

values uniformly distributed in (—10m, 107), average over 100 runs.

Table 1 - Performance comparison

Method Time (ms) | Relative Speed
atan2(sin,cos) (libm) 12.3 1.0x
Atan4 (naive) 47.8 0.26x
Atan4 (branchless) 15.2 0.81x%
Atan4 (branchless, inlined) 13.1 0.94x
Atan4 (AVX2 vectorized) 3.8 3.2x

Authors

Results are specific to the test configuration. Performance may vary with different
compilers, processor architectures, and data alignment patterns. Accuracy: Atan4
matches atan2 to machine epsilon (~107*¢ for double precision) in all tested cases.
Key findings: naive implementation is ~4 X slower than atan2; optimized branchless
scalar version achieves 0.94 X performance; vectorized implementation provides >
3 X speedup, demonstrating advantage for mass data processing.

VIII. Application: Phase analysis of frequency-modulated signals

We demonstrate the practical advantages of Atan4 through phase analysis of
frequency-modulated (FM) signals.

Problem formulation. Consider a frequency-modulated signal:

s(t) =Acos@(t), @(t) = wot + P sin(Qt)
where A is amplitude, w, is carrier frequency, [ is modulation index, and Q is
modulation frequency. Task: compute the instantaneous frequency w(t) = de/dt.

Traditional approach using atan2. The standard method constructs the analytic
signal using the Hilbert transform, extracts phase @(t) = atanZ2(Im[s_analytic(t)],
Re[s_analytic(t)]), and differentiates to obtain instantaneous frequency. When

attempting symbolic differentiation in a CAS, atan2 produces complex piecewise
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expressions that require extensive simplification, complicate analytical manipulation,
hinder automatic code generation, and obscure the underlying mathematical structure.
Improved approach using Atan4. Direct phase computation: @(t) =

Atan4(¢(t)). Symbolic differentiation yields:

w(t) = %(p(t) = wy + LQ cos(L1t)

This result matches the exact theoretical derivative, contains no piecewise
definitions, and is immediately usable for further analysis.

Practical benefits. The analytical form enables direct Fourier analysis using
Bessel functions of the first kind, allows calculation of optimal filter bandwidth and
time-varying filter parameters, enables sensitivity analysis computed symbolically
without numerical approximation, and supports direct export to C/CUDA/VHDL for
hardware implementation via automatic code generation tools.

Comparison of symbolic processing efficiency. We compare symbolic
processing in SymPy for test expressions where f(t) = t* + sin(3t)/t (representative
complex function):

Table 2 - SymPy processing comparison

. Original Simplification Time Size of Simplified
Operation . .
Expression (ms) Expression (nodes)
diff(atan2(sin(f(t)), . .
cos(f(t)), 1 Piecewise(...) 15.2 45
diff(Atan4(f(t)), t) Derivative(f(t), t) 2.1 3
Authors

Key findings: 7.2 X faster symbolic processing, 15 X smaller expression trees,
and direct analytical form vs. complex piecewise structure.
Extension to real signals with noise. For signals containing noise, using

regularized Atan4:

d

w(t) = - Atan4. (¢ (1))

The regularization parameter € provides natural noise robustness, smoothing
small noise fluctuations near sin x = 0 or cos x = 0, avoiding spurious discontinuities

in derivative estimation, and enabling stable gradient-based tracking algorithms.
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IX. Discussion

Systematic nature of the approach. The proposed family — Atan4, Asin4, and
Acos4 — demonstrates a unified methodology for constructing closed-form analytical
representations of complete (four-quadrant) inverse trigonometric functions. All three
are built according to a consistent principle: use the principal value as the base function,
add a correction term constructed from ratios of trigonometric functions to their
absolute values, and express the result using elementary algebraic operations without
explicit conditional logic. This systematicity indicates generality: the approach is a
transferable method applicable to other multivalued functions requiring unwrapping or
quadrant disambiguation.

Advantages and optimal use cases. Key strengths include purely algebraic
representation (unlike formulations with explicit sign functions which CAS expand
into piecewise definitions, Atan4 uses only trigonometry, absolute values, and
division), strict mathematical equivalence to atan2, symbolic computation efficiency
(demonstrated 7 X faster processing and 15 X smaller expression trees), vectorization
advantages (branchless structure enables efficient SIMD implementations), and
gradient continuity (regularized form provides smooth derivatives for optimization
algorithms).

Optimal application domains: computer algebra systems (primary use case;
eliminates piecewise expansion), automatic code generation (clean symbolic forms
translate directly to efficient code), SIMD-vectorized mass computations (branchless
structure crucial for performance), gradient-based optimization (smooth derivatives
required for convergence), and analytical derivations (compact forms simplify manual
calculation).

Limitations. Modern CPUs have heavily optimized atan2 implementations in
libm/glibc, often using hardware-accelerated instructions, lookup tables with
polynomial refinement, and guaranteed IEEE 754 compliance for edge cases. Atan4
cannot leverage these hardware-specific optimizations directly, potentially limiting
scalar performance on some architectures. While theoretically equivalent, Atan4

requires careful attention to division by zero when cos x = 0, numerical precision near
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sinx =0 or cosx =0, and behavior with non-finite inputs. The regularization
parameter ¢ introduces approximation error O(¢?) and requires parameter tuning.

Positioning relative to atan2. Atan4 is not intended as a universal replacement
for atan2 but rather as a specialized tool complementing atan2. Prefer atan2 for
conventional numerical computations where performance and standardization are
paramount. Choose Atan4 when symbolic manipulation, automatic differentiation, or
vectorization are critical.

X. Conclusion

We have presented a systematic approach to constructing closed-form analytical
representations of inverse trigonometric functions for computing the argument of a
complex number. The proposed function family — Atan4, Asin4, and Acos4 — combines
analytical rigor with numerical efficiency, addressing long-standing limitations of
traditional piecewise-defined functions.

Principal contributions include: analytical formulation using only elementary
algebraic operations without explicit piecewise definitions, rigorous proof of
mathematical equivalence between Atan4 and atan2(sin x, cos x), characterization of
continuity, differentiability, periodicity, and development of regularization techniques
ensuring global smoothness, multiple implementation strategies (scalar branchless,
regularized for optimization, vectorized SIMD), performance validation showing
optimized scalar Atan4 achieves 94% of atan2 performance while vectorized
implementations provide > 3 X speedup, and application demonstration showing 7 X
faster symbolic processing and seamless integration into automatic code generation
workflows.

The Atan4/Asin4/Acos4 family is best viewed as a specialized tool for domains
where analytical expressiveness is paramount: symbolic mathematics systems,
automatic differentiation frameworks, code generation tools, and vectorized signal
processing. We acknowledge that Atan4 cannot match the extensive hardware
optimization of established atan2 implementations in standard scalar computations,
and is best viewed as complementing rather than replacing atan2.

Future research directions include extension to complex arguments, rigorous error
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analysis for finite-precision arithmetic, hardware acceleration through FPGA and GPU
kernels, standardization proposals for ISO C/C++ standards, and broader applications
in quantum computing phase estimation, computer vision, and robotics. The
development of Atan4 demonstrates that computational mathematics continues to
benefit from revisiting classical problems with modern tools and requirements. As
scientific computing becomes increasingly integrated with symbolic systems and
machine learning pipelines, the demand for functions that are simultaneously

analytically elegant and numerically efficient will only grow.
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