

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 11

http://www.moderntechno.de/index.php/meit/article/view/meit41-01-023
DOI: 10.30890/2567-5273.2025-41-01-023

UDC 621.391

ANALYTICALLY CONTINUOUS FUNCTIONS FOR COMPUTING THE

ARGUMENT OF A COMPLEX NUMBER
Lukin K.A.

Dr. of Phys.-Math. Sciences, Prof., IEEE Fellow
ORCID: 0000-0001-9998-9207

Konovalov V.M.
Leading Engineer

ORCID: 0009-0004-1932-4627
A. Ya. Usikov Institute of Radiophysics & Electronics,

National Academy of Sciences of Ukraine,
Kharkiv, Proskury 12, 61085

Abstract. Computing the argument of a complex number is fundamental to signal processing,

navigation, and computational geometry. The standard atan2 function, while numerically efficient,
produces cumbersome piecewise expressions in symbolic computation systems, complicating
automatic differentiation, integration, and code generation. We present a family of analytically
continuous functions – Atan4, Asin4, and Acos4 – that provide closed-form alternatives to classical
inverse trigonometric functions. These functions combine analytical expressiveness with numerical
efficiency, being expressed entirely through elementary algebraic operations without explicit
piecewise definitions. We rigorously prove the equivalence between Atan4 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 , 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥),
analyze its analytical properties, and present optimized implementations including branchless scalar
and vectorized (SIMD) algorithms. Benchmarks demonstrate that optimized scalar Atan4 achieves
0.94× the performance of atan2, while vectorized implementations provide more than threefold
speedup in mass data processing. Application to phase analysis of frequency-modulated signals
demonstrates practical advantages in symbolic manipulation and automatic code generation. The
systematic approach extends naturally to Asin4 and Acos4, making this function family a promising
addition to mathematical libraries for specialized tasks requiring both analytical rigor and
computational efficiency.

Key words: argument computation, atan2, Atan4, inverse trigonometric functions, symbolic
computation, phase analysis, branchless algorithms, SIMD vectorization.

Introduction

Computing the argument of a complex number is a fundamental operation in

engineering and scientific applications, including signal processing, radar systems,

navigation, quantum mechanics, and computational geometry. The standard function

for this purpose is atan2(𝑦𝑦, 𝑥𝑥), developed in the 1960s-1970s and now included in

virtually all programming languages and mathematical libraries [1], [2]. Its advantages

are well established: correct operation in all four quadrants, numerical stability when

𝑥𝑥 ≈ 0, and high performance through hardware and library-level optimizations.

However, atan2 has a piecewise-defined structure that makes it inconvenient for

symbolic computation systems. When used in automatic differentiation, integration, or

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 12

expression simplification, atan2 typically generates complex conditional expressions

requiring additional processing. Classical sources such as Numerical Recipes [2], along

with comprehensive treatments by Higham [3] and foundational work by Knuth [8],

discuss the numerical efficiency of atan2 but acknowledge challenges in symbolic

contexts. Modern computer algebra systems such as SymPy [4] support atan2 but

represent it using piecewise-defined expressions, complicating automatic

simplification. In signal processing applications – particularly FM signal phase

analysis as detailed by Oppenheim and Schafer [5] and Haykin [6] – atan2 is widely

used for instantaneous frequency estimation, yet its piecewise nature hinders analytical

derivations.

To address this limitation, we propose a family of functions – Atan4, Asin4, and

Acos4 – that: (1) preserve the numerical stability and correctness of atan2; (2) possess

closed-form analytical representations; (3) enable efficient symbolic transformations

and automatic code generation; (4) achieve performance comparable to or exceeding

atan2 in vectorized computations. This paper focuses primarily on Atan4 as the most

practically significant member of the family, while demonstrating the systematic nature

of the approach through its natural extension to Asin4 and Acos4.

The remainder of this paper is organized as follows. Section II defines the Atan4

function and Section III proves its equivalence to atan2. Section IV analyzes analytical

properties. Sections V-VI present implementation strategies and regularization

techniques. Section VII presents performance benchmarks, Section VIII demonstrates

application to FM signal analysis, and Sections IX-X provide discussion and

conclusions.

II. Definition of the Atan4 function

We introduce the function Atan4(x) as a closed-form analytical alternative to atan2:

Atan4(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos𝑥𝑥

�+ 𝜋𝜋 �1 −
sign(sin 𝑥𝑥)

2
(1 + sign(cos𝑥𝑥))�

where

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = �
𝑡𝑡

|𝑡𝑡|
, 𝑡𝑡 ≠ 0

0, 𝑡𝑡 = 0

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 13

is the standard sign function. The function is expressed entirely through elementary

operations (arctan, sin, cos, sign), providing a compact analytical representation.

The range of Atan4 is [0, 2𝜋𝜋) for 𝑥𝑥 ∈ ℝ. To convert to the standard principal value

range (−𝜋𝜋,𝜋𝜋], we define:

Atan4pr(𝑥𝑥) = � Atan4(𝑥𝑥), if Atan4(𝑥𝑥) ≤ 𝜋𝜋
Atan4(𝑥𝑥) − 2𝜋𝜋, if Atan4(𝑥𝑥) > 𝜋𝜋

This mapping ensures full consistency with the classical definition of the

argument of a complex number [5], [6].

Alternative form for symbolic computation. The sign function can be expressed

directly through trigonometric functions:

Atan4(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos𝑥𝑥

� + 𝜋𝜋 �1 −
1
2

sin 𝑥𝑥
|sin 𝑥𝑥| �1 +

cos 𝑥𝑥
|cos 𝑥𝑥|��

This representation preserves algebraic structure in computer algebra systems, as

|𝑡𝑡| is processed as �𝑡𝑡² rather than expanding into piecewise definitions.

Extension to Asin4 and Acos4. The approach extends systematically to other

inverse trigonometric functions:

Asin4(𝑥𝑥) = sign𝜀𝜀(cos 𝑥𝑥) ⋅ arcsin(sin 𝑥𝑥) +
𝜋𝜋
2

[1 − sign𝜀𝜀(cos𝑥𝑥)] ⋅ sign𝜀𝜀(sin 𝑥𝑥)

Acos4(𝑥𝑥) = sign𝜀𝜀(sin 𝑥𝑥) ⋅ arccos(cos 𝑥𝑥) +
𝜋𝜋
2

[1 − |sign𝜀𝜀(sin 𝑥𝑥)|][1− sign𝜀𝜀(cos 𝑥𝑥)]

All three functions are mathematically equivalent: Atan4(𝑥𝑥) ≡ Asin4(𝑥𝑥) ≡

Acos4(𝑥𝑥) ≡ 𝑥𝑥 (𝑚𝑚𝑚𝑚𝑚𝑚 2𝜋𝜋). From the standpoint of numerical stability and performance,

Atan4 is preferable in most cases, as arctangent is numerically stable, has an

unrestricted domain, and is highly optimized in mathematical libraries.

III. Equivalence of Atan4 and atan2

Theorem 1. For any real 𝑥𝑥, the following equality holds:

Atan4pr(𝑥𝑥) = atan2(sin 𝑥𝑥 , cos𝑥𝑥)

Proof. We verify equivalence by examining each quadrant separately.

Case 1: First quadrant (cos 𝑥𝑥 > 0, sin 𝑥𝑥 ≥ 0)

In this region,

arctan(sin 𝑥𝑥 cos𝑥𝑥⁄) = arctan(tan 𝑥𝑥) = 𝑥𝑥 (modulo 2𝜋𝜋 for 𝑥𝑥 reduced to [0,𝜋𝜋/

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 14

2]).

The correction term evaluates to:

𝜋𝜋[1 −
1
2

(1)(1 + 1)] = 𝜋𝜋[1 − 1] = 0

Thus, Atan4(𝑥𝑥) = 𝑥𝑥, which coincides with atan2(sin 𝑥𝑥 , cos𝑥𝑥).

Case 2: Second quadrant (cos 𝑥𝑥 < 0, sin 𝑥𝑥 > 0)

Here, arctan(sin 𝑥𝑥 cos𝑥𝑥⁄) yields 𝑥𝑥 − 𝜋𝜋 (the principal value). The correction term

evaluates to:

𝜋𝜋 �1 −
1
2

(1)(1 − 1)� = 𝜋𝜋

Thus, Atan4(𝑥𝑥) = (𝑥𝑥 − 𝜋𝜋) + 𝜋𝜋 = 𝑥𝑥, matching atan2.

Case 3: Third quadrant (cos 𝑥𝑥 < 0, sin 𝑥𝑥 < 0)

The principal value is again 𝑥𝑥 − 𝜋𝜋. The correction term evaluates to:

𝜋𝜋 �1 −
1
2

(−1)(1 − 1)� = 𝜋𝜋

Result: Atan4(𝑥𝑥) = 𝑥𝑥. After conversion to (−𝜋𝜋,𝜋𝜋], this equals

atan2(sin 𝑥𝑥 , cos 𝑥𝑥).

Case 4: Fourth quadrant (cos 𝑥𝑥 > 0, sin 𝑥𝑥 < 0)

Principal value: arctan(sin 𝑥𝑥 cos𝑥𝑥⁄) = 𝑥𝑥. The correction term evaluates to:

𝜋𝜋 �1 −
1
2

(−1)(1 + 1)� = 2𝜋𝜋

Result: Atan4(𝑥𝑥) = 𝑥𝑥 + 2𝜋𝜋. After mapping to (−𝜋𝜋,𝜋𝜋], this yields x, as required.

Boundary points (𝑥𝑥 = 0, 𝜋𝜋/2, 𝜋𝜋, 3𝜋𝜋/2): Values at these points, obtained

through one-sided limits, coincide with atan2 by continuity.

Unlike the standard atan2 function, the proposed Atan4 is not defined piecewise

but expressed in closed-form, facilitating symbolic manipulation.

IV. Analytical properties

1. Motivating example: Symbolic differentiation

To illustrate the advantage of closed-form representation, consider differentiating

the phase function in SymPy. For atan2(sin(𝑥𝑥) , cos(𝑥𝑥)), this produces a piecewise

expression requiring simplification to reduce to unity. In contrast, differentiation of

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 15

Atan4(x) using the regularized form yields directly: 1. This demonstrates the practical

advantage of Atan4 for symbolic computation.

2. Continuity and differentiability

The Atan4 function is continuous over ℝ except at points where sign(0) is

undefined (sin 𝑥𝑥 = 0 or cos𝑥𝑥 = 0). These discontinuities are eliminated through

regularization (Section VI). Within each quadrant, Atan4(x) locally coincides with the

linear function 𝑥𝑥 + 𝐶𝐶, where 𝐶𝐶 depends on the quadrant. Hence:

𝑑𝑑
𝑑𝑑𝑑𝑑

Atan4(𝑥𝑥) = 1

for all 𝑥𝑥 except at quadrant boundaries. At boundaries, one-sided limits coincide,

making the function piecewise smooth for practical purposes.

3. Periodicity and stability

Atan4 is 2π-periodic, consistent with atan2 behavior and the classical definition

of argument. For large |𝑥𝑥|, reduce the argument modulo 2π (using fmod or equivalent)

to prevent numerical error accumulation.

V. Numerical implementation

1. Branchless implementation

To eliminate conditional jumps, compute sign arithmetically. The branchless

computation paradigm, extensively analyzed in the literature [7], enables elimination

of conditional branches and improved efficiency of SIMD-based implementations:

sign(𝑡𝑡) = (𝑡𝑡 > 0) − (𝑡𝑡 < 0)

This enables branchless evaluation:

Atan4(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos𝑥𝑥

�+ 𝜋𝜋 �1 −
sign(sin 𝑥𝑥)

2
(1 + sign(cos𝑥𝑥))�

where sign is computed without branching using comparison operators.

2. Vectorized (SIMD) implementation

Using AVX2 or AVX-512 enables processing 4-8 elements simultaneously: load

vector x, compute sin(𝑥𝑥) and cos(𝑥𝑥) vectorially, evaluate arctan vectorially, compute

sign using vectorized comparisons, and add correction term. This approach provides

approximately 3 − 8 × acceleration compared to element-wise atan2, depending on

hardware and compiler optimizations. Performance gains are architecture-specific and

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 16

depend on data alignment, compiler optimization level, and availability of vectorized

math libraries.

VI. Regularization of the sign function

The function sign(𝑡𝑡) = 𝑡𝑡/|𝑡𝑡| is undefined at 𝑡𝑡 = 0. In practical computations, this

discontinuity can cause numerical instability when processing noisy data, performing

numerical integration, or applying gradient-based optimization methods where

continuity and differentiability are essential.

Regularization principle. To eliminate the discontinuity at zero, we introduce a

regularized sign function:

sign𝜀𝜀(𝑡𝑡) =
𝑡𝑡

√𝑡𝑡2 + 𝜀𝜀2
, 𝜀𝜀 > 0

As 𝜀𝜀 → 0, this function converges pointwise to the classical sign(𝑡𝑡). Unlike the

discontinuous classical function, sign_𝜀𝜀(𝑡𝑡) provides a smooth transition between −1

and +1 near zero. The corresponding substitutions for trigonometric expressions are:

sin(𝑥𝑥)
|sin(𝑥𝑥)| ⇒

sin(𝑥𝑥)
√sin2𝑥𝑥 + 𝜀𝜀2

,
 cos(𝑥𝑥)
|cos(𝑥𝑥)| ⇒

cos(𝑥𝑥)
√cos2𝑥𝑥 + 𝜀𝜀2

Properties. For any 𝜀𝜀 > 0, sign_𝜀𝜀(𝑡𝑡) is continuous and infinitely differentiable

over its entire domain. The parameter 𝜀𝜀 controls the transition width. The regularized

function has a continuous derivative:

𝑑𝑑
𝑑𝑑𝑑𝑑

sign𝜀𝜀(𝑡𝑡) =
𝜀𝜀2

(𝑡𝑡2 + 𝜀𝜀2)3/2

with maximum derivative at 𝑡𝑡 = 0 equal to 1/𝜀𝜀 and decay rate ~1/𝑡𝑡² for large |𝑡𝑡|. This

approach ensures numerical stability against rounding and overflow errors, as

discussed in the numerical analysis literature [3], [9], [10].

Application in Atan4. The fully regularized Atan4 function is:

Atan4𝜀𝜀(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos 𝑥𝑥

� + 𝜋𝜋 �1 −
1
2

sign𝜀𝜀(sin 𝑥𝑥)[1 + sign𝜀𝜀(cos𝑥𝑥)]�

This formulation is globally continuous on ℝ, infinitely differentiable on ℝ, and

converges to Atan4 as 𝜀𝜀 → 0.

Practical recommendations. For double precision (float64), use 𝜀𝜀~10⁻¹² to

10⁻⁸; for single precision (float32), use 𝜀𝜀~10⁻⁶ to 10⁻⁴. In symbolic computation, use

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 17

non-regularized form and apply regularization as a limiting operation (𝜀𝜀 → 0) in final

analytical results. In numerical optimization, always use regularized form to ensure

continuous gradients.

VII. Performance benchmarks

Experimental setup: Intel Core i7-10700K, GCC 12 with −O3 optimization, 10⁶

values uniformly distributed in (−10𝜋𝜋, 10𝜋𝜋), average over 100 runs.

Table 1 - Performance comparison
Method Time (ms) Relative Speed

atan2(sin,cos) (libm) 12.3 1.0×
Atan4 (naive) 47.8 0.26×
Atan4 (branchless) 15.2 0.81×
Atan4 (branchless, inlined) 13.1 0.94×
Atan4 (AVX2 vectorized) 3.8 3.2×

Authors

Results are specific to the test configuration. Performance may vary with different

compilers, processor architectures, and data alignment patterns. Accuracy: Atan4

matches atan2 to machine epsilon (~10⁻¹⁶ for double precision) in all tested cases.

Key findings: naive implementation is ~4 × slower than atan2; optimized branchless

scalar version achieves 0.94 × performance; vectorized implementation provides >

3 × speedup, demonstrating advantage for mass data processing.

VIII. Application: Phase analysis of frequency-modulated signals

We demonstrate the practical advantages of Atan4 through phase analysis of

frequency-modulated (FM) signals.

Problem formulation. Consider a frequency-modulated signal:

𝑠𝑠(𝑡𝑡) = 𝐴𝐴 cos𝜑𝜑(𝑡𝑡) , 𝜑𝜑(𝑡𝑡) = 𝜔𝜔0𝑡𝑡 + 𝛽𝛽 sin(Ω𝑡𝑡)

where 𝐴𝐴 is amplitude, 𝜔𝜔0 is carrier frequency, 𝛽𝛽 is modulation index, and Ω is

modulation frequency. Task: compute the instantaneous frequency 𝜔𝜔(𝑡𝑡) = 𝑑𝑑𝜑𝜑/𝑑𝑑𝑑𝑑.

Traditional approach using atan2. The standard method constructs the analytic

signal using the Hilbert transform, extracts phase 𝜑𝜑�(𝑡𝑡) = atan2(Im[s_analytic(𝑡𝑡)],

Re[s_analytic(𝑡𝑡)]), and differentiates to obtain instantaneous frequency. When

attempting symbolic differentiation in a CAS, atan2 produces complex piecewise

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 18

expressions that require extensive simplification, complicate analytical manipulation,

hinder automatic code generation, and obscure the underlying mathematical structure.

Improved approach using Atan4. Direct phase computation: 𝜑𝜑�(𝑡𝑡) =

Atan4(𝜑𝜑(𝑡𝑡)). Symbolic differentiation yields:

𝜔𝜔(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜑𝜑(𝑡𝑡) = 𝜔𝜔0 + 𝛽𝛽Ω cos(Ω𝑡𝑡)

This result matches the exact theoretical derivative, contains no piecewise

definitions, and is immediately usable for further analysis.

Practical benefits. The analytical form enables direct Fourier analysis using

Bessel functions of the first kind, allows calculation of optimal filter bandwidth and

time-varying filter parameters, enables sensitivity analysis computed symbolically

without numerical approximation, and supports direct export to C/CUDA/VHDL for

hardware implementation via automatic code generation tools.

Comparison of symbolic processing efficiency. We compare symbolic

processing in SymPy for test expressions where 𝑓𝑓(𝑡𝑡) = 𝑡𝑡² + sin(3𝑡𝑡) 𝑡𝑡⁄ (representative

complex function):

Table 2 - SymPy processing comparison

Operation Original
Expression

Simplification Time
(ms)

Size of Simplified
Expression (nodes)

diff(atan2(sin(f(t)),
cos(f(t))), t) Piecewise(...) 15.2 45

diff(Atan4(f(t)), t) Derivative(f(t), t) 2.1 3
Authors

Key findings: 7.2 × faster symbolic processing, 15 × smaller expression trees,

and direct analytical form vs. complex piecewise structure.

Extension to real signals with noise. For signals containing noise, using

regularized Atan4:

𝜔𝜔(𝑡𝑡) ≈
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴4𝜀𝜀(𝜑𝜑�(𝑡𝑡))

The regularization parameter 𝜀𝜀 provides natural noise robustness, smoothing

small noise fluctuations near sin 𝑥𝑥 = 0 or cos 𝑥𝑥 = 0, avoiding spurious discontinuities

in derivative estimation, and enabling stable gradient-based tracking algorithms.

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 19

IX. Discussion

Systematic nature of the approach. The proposed family – Atan4, Asin4, and

Acos4 – demonstrates a unified methodology for constructing closed-form analytical

representations of complete (four-quadrant) inverse trigonometric functions. All three

are built according to a consistent principle: use the principal value as the base function,

add a correction term constructed from ratios of trigonometric functions to their

absolute values, and express the result using elementary algebraic operations without

explicit conditional logic. This systematicity indicates generality: the approach is a

transferable method applicable to other multivalued functions requiring unwrapping or

quadrant disambiguation.

Advantages and optimal use cases. Key strengths include purely algebraic

representation (unlike formulations with explicit sign functions which CAS expand

into piecewise definitions, Atan4 uses only trigonometry, absolute values, and

division), strict mathematical equivalence to atan2, symbolic computation efficiency

(demonstrated 7 × faster processing and 15 × smaller expression trees), vectorization

advantages (branchless structure enables efficient SIMD implementations), and

gradient continuity (regularized form provides smooth derivatives for optimization

algorithms).

Optimal application domains: computer algebra systems (primary use case;

eliminates piecewise expansion), automatic code generation (clean symbolic forms

translate directly to efficient code), SIMD-vectorized mass computations (branchless

structure crucial for performance), gradient-based optimization (smooth derivatives

required for convergence), and analytical derivations (compact forms simplify manual

calculation).

Limitations. Modern CPUs have heavily optimized atan2 implementations in

libm/glibc, often using hardware-accelerated instructions, lookup tables with

polynomial refinement, and guaranteed IEEE 754 compliance for edge cases. Atan4

cannot leverage these hardware-specific optimizations directly, potentially limiting

scalar performance on some architectures. While theoretically equivalent, Atan4

requires careful attention to division by zero when cos 𝑥𝑥 = 0, numerical precision near

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 20

sin 𝑥𝑥 = 0 or cos 𝑥𝑥 = 0, and behavior with non-finite inputs. The regularization

parameter ε introduces approximation error O(𝜀𝜀²) and requires parameter tuning.

Positioning relative to atan2. Atan4 is not intended as a universal replacement

for atan2 but rather as a specialized tool complementing atan2. Prefer atan2 for

conventional numerical computations where performance and standardization are

paramount. Choose Atan4 when symbolic manipulation, automatic differentiation, or

vectorization are critical.

X. Conclusion

We have presented a systematic approach to constructing closed-form analytical

representations of inverse trigonometric functions for computing the argument of a

complex number. The proposed function family – Atan4, Asin4, and Acos4 – combines

analytical rigor with numerical efficiency, addressing long-standing limitations of

traditional piecewise-defined functions.

Principal contributions include: analytical formulation using only elementary

algebraic operations without explicit piecewise definitions, rigorous proof of

mathematical equivalence between Atan4 and atan2(sin 𝑥𝑥 , cos 𝑥𝑥), characterization of

continuity, differentiability, periodicity, and development of regularization techniques

ensuring global smoothness, multiple implementation strategies (scalar branchless,

regularized for optimization, vectorized SIMD), performance validation showing

optimized scalar Atan4 achieves 94% of atan2 performance while vectorized

implementations provide > 3 × speedup, and application demonstration showing 7 ×

faster symbolic processing and seamless integration into automatic code generation

workflows.

The Atan4/Asin4/Acos4 family is best viewed as a specialized tool for domains

where analytical expressiveness is paramount: symbolic mathematics systems,

automatic differentiation frameworks, code generation tools, and vectorized signal

processing. We acknowledge that Atan4 cannot match the extensive hardware

optimization of established atan2 implementations in standard scalar computations,

and is best viewed as complementing rather than replacing atan2.

Future research directions include extension to complex arguments, rigorous error

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 21

analysis for finite-precision arithmetic, hardware acceleration through FPGA and GPU

kernels, standardization proposals for ISO C/C++ standards, and broader applications

in quantum computing phase estimation, computer vision, and robotics. The

development of Atan4 demonstrates that computational mathematics continues to

benefit from revisiting classical problems with modern tools and requirements. As

scientific computing becomes increasingly integrated with symbolic systems and

machine learning pipelines, the demand for functions that are simultaneously

analytically elegant and numerically efficient will only grow.

References

1. IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019, IEEE, 2019,

doi:10.1109/IEEESTD.2019.8766229

2. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical

Recipes: The Art of Scientific Computing, 3rd ed., Cambridge Univ. Press, 2007,

doi:10.1017/CBO9780511813890

3. N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM,

2002, doi:10.1137/1.9780898718027

4. A. Meurer et al., "SymPy: symbolic computing in Python," PeerJ Comput. Sci.,

vol. 3, e103, 2017, doi:10.7717/peerj-cs.103

5. Oppenheim, A. V., & Schafer, R. W. 2010. Discrete-Time Signal Processing.

3rd ed. Pearson. ISBN: 9780131988422

6. Haykin, S., & Moher, M. 2022. Communication Systems. 6th ed. Wiley. ISBN:

978-1-119-82826-6

7. J. L. Bentley, "Programming Pearls: Eliminating Branches from a Binary

Search," Communications of the ACM, vol. 32, no. 12, pp. 1492-1498, 1989,

doi:10.1145/76380.76381

8. D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical

Algorithms, Addison-Wesley, 1998, doi:10.5555/280635

9. Burden, R. L., Faires, J. D., & Burden, A. M. 2024. Numerical Analysis. 11th

ed. Pearson. ISBN: 978-0137343888

 Modern engineering and innovative technologies Issue 41 / Part 1

ISSN 2567-5273 www.moderntechno.de 22

10. J. Stoer и R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Springer,

2002, doi:10.1007/978-0-387-21738-3

© Lukin K.A., Konovalov V.M.

