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Abstract. Computing the argument of a complex number is fundamental to signal processing, 

navigation, and computational geometry. The standard atan2 function, while numerically efficient, 
produces cumbersome piecewise expressions in symbolic computation systems, complicating 
automatic differentiation, integration, and code generation. We present a family of analytically 
continuous functions – Atan4, Asin4, and Acos4 – that provide closed-form alternatives to classical 
inverse trigonometric functions. These functions combine analytical expressiveness with numerical 
efficiency, being expressed entirely through elementary algebraic operations without explicit 
piecewise definitions. We rigorously prove the equivalence between Atan4 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 , 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥), 
analyze its analytical properties, and present optimized implementations including branchless scalar 
and vectorized (SIMD) algorithms. Benchmarks demonstrate that optimized scalar Atan4 achieves 
0.94× the performance of atan2, while vectorized implementations provide more than threefold 
speedup in mass data processing. Application to phase analysis of frequency-modulated signals 
demonstrates practical advantages in symbolic manipulation and automatic code generation. The 
systematic approach extends naturally to Asin4 and Acos4, making this function family a promising 
addition to mathematical libraries for specialized tasks requiring both analytical rigor and 
computational efficiency. 

Key words: argument computation, atan2, Atan4, inverse trigonometric functions, symbolic 
computation, phase analysis, branchless algorithms, SIMD vectorization. 

Introduction 

Computing the argument of a complex number is a fundamental operation in 

engineering and scientific applications, including signal processing, radar systems, 

navigation, quantum mechanics, and computational geometry. The standard function 

for this purpose is atan2(𝑦𝑦, 𝑥𝑥), developed in the 1960s-1970s and now included in 

virtually all programming languages and mathematical libraries [1], [2]. Its advantages 

are well established: correct operation in all four quadrants, numerical stability when 

𝑥𝑥 ≈ 0, and high performance through hardware and library-level optimizations. 

However, atan2 has a piecewise-defined structure that makes it inconvenient for 

symbolic computation systems. When used in automatic differentiation, integration, or 
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expression simplification, atan2 typically generates complex conditional expressions 

requiring additional processing. Classical sources such as Numerical Recipes [2], along 

with comprehensive treatments by Higham [3] and foundational work by Knuth [8], 

discuss the numerical efficiency of atan2 but acknowledge challenges in symbolic 

contexts. Modern computer algebra systems such as SymPy [4] support atan2 but 

represent it using piecewise-defined expressions, complicating automatic 

simplification. In signal processing applications – particularly FM signal phase 

analysis as detailed by Oppenheim and Schafer [5] and Haykin [6] – atan2 is widely 

used for instantaneous frequency estimation, yet its piecewise nature hinders analytical 

derivations. 

To address this limitation, we propose a family of functions – Atan4, Asin4, and 

Acos4 – that: (1) preserve the numerical stability and correctness of atan2; (2) possess 

closed-form analytical representations; (3) enable efficient symbolic transformations 

and automatic code generation; (4) achieve performance comparable to or exceeding 

atan2 in vectorized computations. This paper focuses primarily on Atan4 as the most 

practically significant member of the family, while demonstrating the systematic nature 

of the approach through its natural extension to Asin4 and Acos4. 

The remainder of this paper is organized as follows. Section II defines the Atan4 

function and Section III proves its equivalence to atan2. Section IV analyzes analytical 

properties. Sections V-VI present implementation strategies and regularization 

techniques. Section VII presents performance benchmarks, Section VIII demonstrates 

application to FM signal analysis, and Sections IX-X provide discussion and 

conclusions. 

II. Definition of the Atan4 function 

We introduce the function Atan4(x) as a closed-form analytical alternative to atan2: 

Atan4(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos𝑥𝑥

�+ 𝜋𝜋 �1 −
sign(sin 𝑥𝑥)

2
(1 + sign(cos𝑥𝑥))� 

where 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = �
𝑡𝑡

|𝑡𝑡|
, 𝑡𝑡 ≠ 0

0, 𝑡𝑡 = 0
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is the standard sign function. The function is expressed entirely through elementary 

operations (arctan, sin, cos, sign), providing a compact analytical representation. 

The range of Atan4 is [0, 2𝜋𝜋) for 𝑥𝑥 ∈ ℝ. To convert to the standard principal value 

range (−𝜋𝜋,𝜋𝜋], we define: 

Atan4pr(𝑥𝑥) = � Atan4(𝑥𝑥), if Atan4(𝑥𝑥) ≤ 𝜋𝜋
Atan4(𝑥𝑥) − 2𝜋𝜋, if Atan4(𝑥𝑥) > 𝜋𝜋 

This mapping ensures full consistency with the classical definition of the 

argument of a complex number [5], [6]. 

Alternative form for symbolic computation. The sign function can be expressed 

directly through trigonometric functions: 

Atan4(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos𝑥𝑥

� + 𝜋𝜋 �1 −
1
2

sin 𝑥𝑥
|sin 𝑥𝑥| �1 +

cos 𝑥𝑥
|cos 𝑥𝑥|�� 

This representation preserves algebraic structure in computer algebra systems, as 

|𝑡𝑡| is processed as �𝑡𝑡² rather than expanding into piecewise definitions. 

Extension to Asin4 and Acos4. The approach extends systematically to other 

inverse trigonometric functions: 

Asin4(𝑥𝑥) = sign𝜀𝜀(cos 𝑥𝑥) ⋅ arcsin(sin 𝑥𝑥) +
𝜋𝜋
2

[1 − sign𝜀𝜀(cos𝑥𝑥)] ⋅ sign𝜀𝜀(sin 𝑥𝑥) 

Acos4(𝑥𝑥) = sign𝜀𝜀(sin 𝑥𝑥) ⋅ arccos(cos 𝑥𝑥) +
𝜋𝜋
2

[1 − |sign𝜀𝜀(sin 𝑥𝑥)|][1− sign𝜀𝜀(cos 𝑥𝑥)] 

All three functions are mathematically equivalent: Atan4(𝑥𝑥) ≡ Asin4(𝑥𝑥) ≡

Acos4(𝑥𝑥) ≡ 𝑥𝑥 (𝑚𝑚𝑚𝑚𝑚𝑚 2𝜋𝜋). From the standpoint of numerical stability and performance, 

Atan4 is preferable in most cases, as arctangent is numerically stable, has an 

unrestricted domain, and is highly optimized in mathematical libraries. 

III. Equivalence of Atan4 and atan2 

Theorem 1. For any real 𝑥𝑥, the following equality holds: 

Atan4pr(𝑥𝑥) = atan2(sin 𝑥𝑥 , cos𝑥𝑥) 

Proof. We verify equivalence by examining each quadrant separately. 

Case 1: First quadrant (cos 𝑥𝑥 > 0, sin 𝑥𝑥 ≥ 0) 

In this region, 

arctan(sin 𝑥𝑥 cos𝑥𝑥⁄ ) = arctan(tan 𝑥𝑥) = 𝑥𝑥 (modulo 2𝜋𝜋 for 𝑥𝑥 reduced to [0,𝜋𝜋/
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2]). 

The correction term evaluates to: 

𝜋𝜋[1 −
1
2

(1)(1 + 1)] = 𝜋𝜋[1 − 1] = 0 

Thus, Atan4(𝑥𝑥) = 𝑥𝑥, which coincides with atan2(sin 𝑥𝑥 , cos𝑥𝑥). 

Case 2: Second quadrant (cos 𝑥𝑥 < 0, sin 𝑥𝑥 > 0) 

Here, arctan(sin 𝑥𝑥 cos𝑥𝑥⁄ ) yields 𝑥𝑥 − 𝜋𝜋 (the principal value). The correction term 

evaluates to: 

𝜋𝜋 �1 −
1
2

(1)(1 − 1)� = 𝜋𝜋 

Thus, Atan4(𝑥𝑥) = (𝑥𝑥 − 𝜋𝜋) + 𝜋𝜋 = 𝑥𝑥, matching atan2. 

Case 3: Third quadrant (cos 𝑥𝑥 < 0, sin 𝑥𝑥 < 0) 

The principal value is again 𝑥𝑥 − 𝜋𝜋. The correction term evaluates to: 

𝜋𝜋 �1 −
1
2

(−1)(1 − 1)� = 𝜋𝜋 

Result: Atan4(𝑥𝑥) = 𝑥𝑥. After conversion to (−𝜋𝜋,𝜋𝜋], this equals 

atan2(sin 𝑥𝑥 , cos 𝑥𝑥). 

Case 4: Fourth quadrant (cos 𝑥𝑥 > 0, sin 𝑥𝑥 < 0) 

Principal value: arctan(sin 𝑥𝑥 cos𝑥𝑥⁄ ) = 𝑥𝑥. The correction term evaluates to: 

𝜋𝜋 �1 −
1
2

(−1)(1 + 1)� = 2𝜋𝜋 

Result: Atan4(𝑥𝑥) = 𝑥𝑥 + 2𝜋𝜋. After mapping to (−𝜋𝜋,𝜋𝜋], this yields x, as required. 

Boundary points (𝑥𝑥 = 0, 𝜋𝜋/2, 𝜋𝜋, 3𝜋𝜋/2): Values at these points, obtained 

through one-sided limits, coincide with atan2 by continuity. 

Unlike the standard atan2 function, the proposed Atan4 is not defined piecewise 

but expressed in closed-form, facilitating symbolic manipulation. 

IV. Analytical properties 

1. Motivating example: Symbolic differentiation 

To illustrate the advantage of closed-form representation, consider differentiating 

the phase function in SymPy. For atan2(sin(𝑥𝑥) , cos(𝑥𝑥)), this produces a piecewise 

expression requiring simplification to reduce to unity. In contrast, differentiation of 
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Atan4(x) using the regularized form yields directly: 1. This demonstrates the practical 

advantage of Atan4 for symbolic computation. 

2. Continuity and differentiability 

The Atan4 function is continuous over ℝ except at points where sign(0) is 

undefined (sin 𝑥𝑥 = 0 or cos𝑥𝑥 = 0). These discontinuities are eliminated through 

regularization (Section VI). Within each quadrant, Atan4(x) locally coincides with the 

linear function 𝑥𝑥 + 𝐶𝐶, where 𝐶𝐶 depends on the quadrant. Hence: 

𝑑𝑑
𝑑𝑑𝑑𝑑

Atan4(𝑥𝑥) = 1 

for all 𝑥𝑥 except at quadrant boundaries. At boundaries, one-sided limits coincide, 

making the function piecewise smooth for practical purposes. 

3. Periodicity and stability 

Atan4 is 2π-periodic, consistent with atan2 behavior and the classical definition 

of argument. For large |𝑥𝑥|, reduce the argument modulo 2π (using fmod or equivalent) 

to prevent numerical error accumulation. 

V. Numerical implementation 

1. Branchless implementation 

To eliminate conditional jumps, compute sign arithmetically. The branchless 

computation paradigm, extensively analyzed in the literature [7], enables elimination 

of conditional branches and improved efficiency of SIMD-based implementations: 

sign(𝑡𝑡) = (𝑡𝑡 > 0) − (𝑡𝑡 < 0) 

This enables branchless evaluation: 

Atan4(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos𝑥𝑥

�+ 𝜋𝜋 �1 −
sign(sin 𝑥𝑥)

2
(1 + sign(cos𝑥𝑥))� 

where sign is computed without branching using comparison operators. 

2. Vectorized (SIMD) implementation 

Using AVX2 or AVX-512 enables processing 4-8 elements simultaneously: load 

vector x, compute sin(𝑥𝑥) and cos(𝑥𝑥) vectorially, evaluate arctan vectorially, compute 

sign using vectorized comparisons, and add correction term. This approach provides 

approximately 3 − 8 × acceleration compared to element-wise atan2, depending on 

hardware and compiler optimizations. Performance gains are architecture-specific and 



 

 Modern engineering and innovative technologies                                                                    Issue 41 / Part 1 

ISSN 2567-5273                                                                                                                                                                                   www.moderntechno.de 16 

depend on data alignment, compiler optimization level, and availability of vectorized 

math libraries. 

VI. Regularization of the sign function 

The function sign(𝑡𝑡) = 𝑡𝑡/|𝑡𝑡| is undefined at 𝑡𝑡 = 0. In practical computations, this 

discontinuity can cause numerical instability when processing noisy data, performing 

numerical integration, or applying gradient-based optimization methods where 

continuity and differentiability are essential. 

Regularization principle. To eliminate the discontinuity at zero, we introduce a 

regularized sign function: 

sign𝜀𝜀(𝑡𝑡) =
𝑡𝑡

√𝑡𝑡2 + 𝜀𝜀2
, 𝜀𝜀 > 0 

As 𝜀𝜀 → 0, this function converges pointwise to the classical sign(𝑡𝑡). Unlike the 

discontinuous classical function, sign_𝜀𝜀(𝑡𝑡) provides a smooth transition between −1 

and +1 near zero. The corresponding substitutions for trigonometric expressions are: 

sin(𝑥𝑥)
|sin(𝑥𝑥)| ⇒

sin(𝑥𝑥)
√sin2𝑥𝑥 + 𝜀𝜀2

,
   cos(𝑥𝑥)
|cos(𝑥𝑥)| ⇒

cos(𝑥𝑥)
√cos2𝑥𝑥 + 𝜀𝜀2

 

Properties. For any 𝜀𝜀 > 0, sign_𝜀𝜀(𝑡𝑡) is continuous and infinitely differentiable 

over its entire domain. The parameter 𝜀𝜀 controls the transition width. The regularized 

function has a continuous derivative: 

𝑑𝑑
𝑑𝑑𝑑𝑑

sign𝜀𝜀(𝑡𝑡) =
𝜀𝜀2

(𝑡𝑡2 + 𝜀𝜀2)3/2 

with maximum derivative at 𝑡𝑡 = 0 equal to 1/𝜀𝜀 and decay rate ~1/𝑡𝑡² for large |𝑡𝑡|. This 

approach ensures numerical stability against rounding and overflow errors, as 

discussed in the numerical analysis literature [3], [9], [10]. 

Application in Atan4. The fully regularized Atan4 function is: 

Atan4𝜀𝜀(𝑥𝑥) = arctan �
sin 𝑥𝑥
cos 𝑥𝑥

� + 𝜋𝜋 �1 −
1
2

sign𝜀𝜀(sin 𝑥𝑥)[1 + sign𝜀𝜀(cos𝑥𝑥)]� 

This formulation is globally continuous on ℝ, infinitely differentiable on ℝ, and 

converges to Atan4 as 𝜀𝜀 → 0. 

Practical recommendations. For double precision (float64), use 𝜀𝜀~10⁻¹² to 

10⁻⁸; for single precision (float32), use 𝜀𝜀~10⁻⁶ to 10⁻⁴. In symbolic computation, use 
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non-regularized form and apply regularization as a limiting operation (𝜀𝜀 → 0) in final 

analytical results. In numerical optimization, always use regularized form to ensure 

continuous gradients. 

VII. Performance benchmarks 

Experimental setup: Intel Core i7-10700K, GCC 12 with −O3 optimization, 10⁶ 

values uniformly distributed in (−10𝜋𝜋, 10𝜋𝜋), average over 100 runs. 
 

Table 1 - Performance comparison 
Method Time (ms) Relative Speed 

atan2(sin,cos) (libm) 12.3 1.0× 
Atan4 (naive) 47.8 0.26× 
Atan4 (branchless) 15.2 0.81× 
Atan4 (branchless, inlined) 13.1 0.94× 
Atan4 (AVX2 vectorized) 3.8 3.2× 

Authors 

 

Results are specific to the test configuration. Performance may vary with different 

compilers, processor architectures, and data alignment patterns. Accuracy: Atan4 

matches atan2 to machine epsilon (~10⁻¹⁶ for double precision) in all tested cases. 

Key findings: naive implementation is ~4 × slower than atan2; optimized branchless 

scalar version achieves 0.94 × performance; vectorized implementation provides >

3 × speedup, demonstrating advantage for mass data processing. 

VIII. Application: Phase analysis of frequency-modulated signals 

We demonstrate the practical advantages of Atan4 through phase analysis of 

frequency-modulated (FM) signals. 

Problem formulation. Consider a frequency-modulated signal: 

𝑠𝑠(𝑡𝑡) = 𝐴𝐴 cos𝜑𝜑(𝑡𝑡) , 𝜑𝜑(𝑡𝑡) = 𝜔𝜔0𝑡𝑡 + 𝛽𝛽 sin(Ω𝑡𝑡) 

where 𝐴𝐴 is amplitude, 𝜔𝜔0 is carrier frequency, 𝛽𝛽 is modulation index, and Ω is 

modulation frequency. Task: compute the instantaneous frequency 𝜔𝜔(𝑡𝑡) = 𝑑𝑑𝜑𝜑/𝑑𝑑𝑑𝑑. 

Traditional approach using atan2. The standard method constructs the analytic 

signal using the Hilbert transform, extracts phase 𝜑𝜑�(𝑡𝑡) = atan2(Im[s_analytic(𝑡𝑡)], 

Re[s_analytic(𝑡𝑡)]), and differentiates to obtain instantaneous frequency. When 

attempting symbolic differentiation in a CAS, atan2 produces complex piecewise 
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expressions that require extensive simplification, complicate analytical manipulation, 

hinder automatic code generation, and obscure the underlying mathematical structure. 

Improved approach using Atan4. Direct phase computation: 𝜑𝜑�(𝑡𝑡) =

Atan4(𝜑𝜑(𝑡𝑡)). Symbolic differentiation yields: 

𝜔𝜔(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜑𝜑(𝑡𝑡) = 𝜔𝜔0 + 𝛽𝛽Ω cos(Ω𝑡𝑡) 

This result matches the exact theoretical derivative, contains no piecewise 

definitions, and is immediately usable for further analysis. 

Practical benefits. The analytical form enables direct Fourier analysis using 

Bessel functions of the first kind, allows calculation of optimal filter bandwidth and 

time-varying filter parameters, enables sensitivity analysis computed symbolically 

without numerical approximation, and supports direct export to C/CUDA/VHDL for 

hardware implementation via automatic code generation tools. 

Comparison of symbolic processing efficiency. We compare symbolic 

processing in SymPy for test expressions where 𝑓𝑓(𝑡𝑡) = 𝑡𝑡² + sin(3𝑡𝑡) 𝑡𝑡⁄  (representative 

complex function): 

Table 2 - SymPy processing comparison 

Operation Original 
Expression 

Simplification Time 
(ms) 

Size of Simplified 
Expression (nodes) 

diff(atan2(sin(f(t)), 
cos(f(t))), t) Piecewise(...) 15.2 45 

diff(Atan4(f(t)), t) Derivative(f(t), t) 2.1 3 
Authors 

 

Key findings: 7.2 × faster symbolic processing, 15 × smaller expression trees, 

and direct analytical form vs. complex piecewise structure. 

Extension to real signals with noise. For signals containing noise, using 

regularized Atan4: 

𝜔𝜔(𝑡𝑡) ≈
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴4𝜀𝜀(𝜑𝜑�(𝑡𝑡)) 

The regularization parameter 𝜀𝜀 provides natural noise robustness, smoothing 

small noise fluctuations near sin 𝑥𝑥 = 0 or cos 𝑥𝑥 = 0, avoiding spurious discontinuities 

in derivative estimation, and enabling stable gradient-based tracking algorithms. 
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IX. Discussion 

Systematic nature of the approach. The proposed family – Atan4, Asin4, and 

Acos4 – demonstrates a unified methodology for constructing closed-form analytical 

representations of complete (four-quadrant) inverse trigonometric functions. All three 

are built according to a consistent principle: use the principal value as the base function, 

add a correction term constructed from ratios of trigonometric functions to their 

absolute values, and express the result using elementary algebraic operations without 

explicit conditional logic. This systematicity indicates generality: the approach is a 

transferable method applicable to other multivalued functions requiring unwrapping or 

quadrant disambiguation. 

Advantages and optimal use cases. Key strengths include purely algebraic 

representation (unlike formulations with explicit sign functions which CAS expand 

into piecewise definitions, Atan4 uses only trigonometry, absolute values, and 

division), strict mathematical equivalence to atan2, symbolic computation efficiency 

(demonstrated 7 × faster processing and 15 × smaller expression trees), vectorization 

advantages (branchless structure enables efficient SIMD implementations), and 

gradient continuity (regularized form provides smooth derivatives for optimization 

algorithms). 

Optimal application domains: computer algebra systems (primary use case; 

eliminates piecewise expansion), automatic code generation (clean symbolic forms 

translate directly to efficient code), SIMD-vectorized mass computations (branchless 

structure crucial for performance), gradient-based optimization (smooth derivatives 

required for convergence), and analytical derivations (compact forms simplify manual 

calculation). 

Limitations. Modern CPUs have heavily optimized atan2 implementations in 

libm/glibc, often using hardware-accelerated instructions, lookup tables with 

polynomial refinement, and guaranteed IEEE 754 compliance for edge cases. Atan4 

cannot leverage these hardware-specific optimizations directly, potentially limiting 

scalar performance on some architectures. While theoretically equivalent, Atan4 

requires careful attention to division by zero when cos 𝑥𝑥 = 0, numerical precision near 
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sin 𝑥𝑥 = 0 or cos 𝑥𝑥 = 0, and behavior with non-finite inputs. The regularization 

parameter ε introduces approximation error O(𝜀𝜀²) and requires parameter tuning. 

Positioning relative to atan2. Atan4 is not intended as a universal replacement 

for atan2 but rather as a specialized tool complementing atan2. Prefer atan2 for 

conventional numerical computations where performance and standardization are 

paramount. Choose Atan4 when symbolic manipulation, automatic differentiation, or 

vectorization are critical. 

X. Conclusion 

We have presented a systematic approach to constructing closed-form analytical 

representations of inverse trigonometric functions for computing the argument of a 

complex number. The proposed function family – Atan4, Asin4, and Acos4 – combines 

analytical rigor with numerical efficiency, addressing long-standing limitations of 

traditional piecewise-defined functions. 

Principal contributions include: analytical formulation using only elementary 

algebraic operations without explicit piecewise definitions, rigorous proof of 

mathematical equivalence between Atan4 and atan2(sin 𝑥𝑥 , cos 𝑥𝑥), characterization of 

continuity, differentiability, periodicity, and development of regularization techniques 

ensuring global smoothness, multiple implementation strategies (scalar branchless, 

regularized for optimization, vectorized SIMD), performance validation showing 

optimized scalar Atan4 achieves 94% of atan2 performance while vectorized 

implementations provide > 3 × speedup, and application demonstration showing 7 × 

faster symbolic processing and seamless integration into automatic code generation 

workflows. 

The Atan4/Asin4/Acos4 family is best viewed as a specialized tool for domains 

where analytical expressiveness is paramount: symbolic mathematics systems, 

automatic differentiation frameworks, code generation tools, and vectorized signal 

processing. We acknowledge that Atan4 cannot match the extensive hardware 

optimization of established atan2 implementations in standard scalar computations, 

and is best viewed as complementing rather than replacing atan2. 

Future research directions include extension to complex arguments, rigorous error 
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analysis for finite-precision arithmetic, hardware acceleration through FPGA and GPU 

kernels, standardization proposals for ISO C/C++ standards, and broader applications 

in quantum computing phase estimation, computer vision, and robotics. The 

development of Atan4 demonstrates that computational mathematics continues to 

benefit from revisiting classical problems with modern tools and requirements. As 

scientific computing becomes increasingly integrated with symbolic systems and 

machine learning pipelines, the demand for functions that are simultaneously 

analytically elegant and numerically efficient will only grow. 
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