DERMIS SURFACE MODIFICATION IN TISSUE ENGINEERING

Authors

  • Olga Macagonova Laboratory of Tissue Engineering and Cellular Culture. The University of Medicine and Pharmacy "Nicolae Testemitanu" of the Republic of Moldova https://orcid.org/0000-0003-4414-3196
  • Adrian Cociug Bank of the human tissues and cells from the Republic of Moldova https://orcid.org/0000-0001-5878-0239
  • Tatiana Taralunga Laboratory of Tissue Engineering and Cellular Culture. The University of Medicine and Pharmacy "Nicolae Testemitanu" of the Republic of Moldova https://orcid.org/0000-0002-8069-4975
  • Viorel Nacu Laboratory of Tissue Engineering and Cellular Culture. The University of Medicine and Pharmacy "Nicolae Testemitanu" of the Republic of Moldova https://orcid.org/0000-0003-2274-9912
  • Tudor Braniste National Center for Materials Study and Testing, Technical University of Moldova https://orcid.org/0000-0001-6043-4642

DOI:

https://doi.org/10.30890/2567-5273.2024-34-00-040

Keywords:

dermis, surface modification, in vitro scaffolds, tissue engineering

Abstract

Introduction: Tissue engineering has evolved over time with the development of biopolymer scaffolds that should have the ability to promote cell adhesion and proliferation in vitro and in vivo. Surface modification of the scaffold material has a great imp

Metrics

Metrics Loading ...

References

Variksha S., Thashree M., Maya M.M. et al. (2022). Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers, 14(24), 5371; DOI: 10.3390/polym14245371.

Mantha S., Pillai S. Khayambashi P. et al. (2019) Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12, 3323.

Viet-Nhi N. K., Chen Y. C., Dang L. H, et al. (2023) Degassing a Decellularized Scaffold Enhances Wound Healing and Reduces Fibrosis during Tracheal Defect Reconstruction: A Preliminary Animal Study. J Funct Biomater. 14(3):147. DOI: 10.3390/jfb14030147.

Costa A., Adamo S., Gossetti F. (2019). Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application? Materials, 12(15), 2375.

DOI: 10.3390/ma12152375

Dziki J.L., Wang D.S. Pineda et al. (2017). Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J. Biomed. Mater. Res. Part A, 105, 138–147.

Zhou Ji. Y., Sun T. (2018). et al. Diverse preparation methods for small intestinal submucosa (SIS): decellularization, components, and structure. J Biomed Mater Res A; 107:689–97.

Ikada Y. (1994). Surface modification of polymers for medical applications. Biomaterials; 15:725–36.

Souza J.C., Sordi M.B., Kanazawa M. (2019) et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater; 94:112–31.

Mir M., Ali M.N., Barakullah A., (2018). et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater, 7(1):1-21. DOI: 10.1007/s40204-018-0083-4.

Hien M. N., Tam Thi N., Thanh N. et al. (2023). Biomedical materials for wound dressing: recent advances and applications. RSC Adv;13(8):5509-5528.

DOI: 10.1039/d2ra07673j.

Bonnans C., Chou J., Werb Z. (2014). Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15 786–801.

DOI: 10.1038/nrm3904.

Mansheng L., Xiao L., Bingui L. (2021) et al. Time-Resolved Extracellular Matrix Atlas of the Developing Human Skin Dermis. Front. Cell Dev. Biol., Volume 9 – 2021. DOI: 10.3389/fcell.2021.783456

Bonnans C., Chou J., Werb Z. (2014). Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801. DOI: 10.1038/nrm3904.

Quan T., and Fisher G. J. (2015). Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology 61, 427–434. DOI:10.1159/000371708.

Bonnans C., Chou J., Werb Z. (2014). Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801. DOI: 10.1038/nrm3904.

Dyer D. P. (2020). Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 160, 336–344. 10.1111/imm.13200.

Nystrom A., Bruckner-Tuderman L. (2019). Matrix molecules and skin biology. Semin. Cell Dev. Biol. 89 136–146. 10.1016/j.semcdb.2018.07.025.

Nystrom A., Bruckner-Tuderman L. (2019). Matrix molecules and skin biology. Semin. Cell Dev. Biol. 89, 136–146. 10.1016/j.semcdb.2018.07.025.

Rousselle P., Montmasson M., Garnier C. (2019). Extracellular Matrix Contribution to Skin Wound Re-epithelialization. Matrix Biol. 75, 12–26. DOI:10.1016/j.matbio. 2018.01.002.

Brinckmann J., Hunzelmann N., Kahle B., et al. (2010). Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta. Lab Invest 90:739–752.

Yu Y., Alkhawaji A., Ding Y. et al. (2016). Decellularized scaffolds in regenerative medicine. Oncotarget; 7:58671–83.

Frantz C., Stewart K.M., Weaver V.M. (2010). The extracellular matrix at a glance. J. Cell Sci.;123:4195–4200. doi: 10.1242/jcs.023820.

Maquart F. X., Monboisse J. C. (2014). Extracellular matrix and wound healing. Pathol. Biol.;62:91–95. doi:10.1016/j.patbio.2014.02.007.

Ventura R. D., Padalhin A. R., Park C. M., Lee B. T. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater. Sci. Eng. C. 2019;104:109841. doi: 10.1016/j.msec.2019.109841.

Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials properties. BioMed. Eng. OnLine, 18, 24., Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. BioMed. Eng. OnLine,18, 24.

Gillette, B. M., Rossen, N. S., Das, N. et al. (2011). Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials, 32, 8067–8076.

Achilli, M., Mantovani, D. (2010). Tailoring Mechanical Properties of Collagen-Based Scaffolds for Vascular Tissue Engineering: The Effects of pH, Temperature and Ionic Strength on Gelation. Polymers, 2, 664–680.

Fernández-Pérez J., Ahearne M. (2019). The impact of decellularization methods on extracellular matrix derived hydrogels. Sci. Rep.;9:1–12. doi:10.1038/s41598-019-49575-2.

Cichoń M. A, Elbe-Bürger A. (2023). Epidermal/Dermal Separation Techniques and Analysis of Cell Populations in Human Skin Sheets. J Invest Dermatol.;143(1):11-17.e8. DOI: 10.1016/j.jid.2022.10.012.

Macagonova, O., Risnic, D., Cociug, A, et al. (2021) Comparative analysis of the skin decellularization methods. Moldovan Medical Journal 64(2), 79-86. https://doi. org/10.52418/moldovan-med-j.64-2.21.14. DOI:10.1111/1523 1747.ep1268106.

Dar-Jen H., Periasamy S., Ko-Chung Y. (2020). Protocols for the preparation and characterization of decellularized tissue and organ scaffolds for tissue engineering. biotechniques 70 (2), 107-115. DOI.:10.2144/btn-2020-0141.

Liyan Jian, Yu C., Ying, Z. (2019). Dermal-Epidermal Separation by Chemical. Epidermal Cells. Methods in Molecular Biology, vol 2109. Pp. 31–33. DOI: 10.1007/7651_2019_266.

Yang J. Z., Qiu L. H., Xiong S. H. (2020). Decellularized adipose matrix provides an inductive microenvironment for stem cells in tissue regeneration World J. Stem. Cells, 12, pp. 585-603.

Dong Li, Y. Song, Y.et al. (2021): MSC-derived immunomodulatory extracellular matrix functionalized electrospun fibers for mitigating foreign-body reaction and tendon adhesion. Acta Biomater., Oct 1:133:280-296. DOI: 10.1016/j.actbio.2021.04.035.

Badylak S. F. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol.; 13:377–383. DOI:10.1016/S1084952102000940.

Puhl D. L., Mohanraj D., Nelson D. W., et al. (2022). Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv. Drug Deliv. Rev.;183:114161. DOI: 10.1016/j.addr.2022.114161.

Patil P., Russo K. A., McCune J. T. et al. (2021). ROS-Degradable Polythioketal Urethane Foam Dressings to Promote Porcine Skin Wound Repair. bioRxiv. DOI:10.1101/2021.05.21.445175.

Vernon R. B., Gooden M. D., Lara, S. L. et al. (2005). Native fibrillar collagen membranes of micron-scale and submicron thicknesses for cell support and perfusion. Biomaterials, 26, 1109–1117.

Ventura R. D., Padalhin A. R., Park C. M. et al. (2019). Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl.,104, 1–12.

Araujo T. A., Almeida M. C., Avanzi, I. et al. (2021). Collagen Membranes for Skin Wound Repair: A Systematic Review. J. Biomater. Appl., 36, 95–112.

Hakim T. R., Pratiwi A., Jamhari N., et al. (2021). Extraction of collagen from the skin of Kacang goat and production of its hydrolysate as an inhibitor of angiotensin converting enzyme. Trop Anim Sci J. 2021;44(2):222-228.

DOI: 10.5398/tasj..44.2.222. 19.

He L, Lan W, Zhao Y. et al. (2020). Characterization of biocompatible pig skin collagen and application of collagen-based films for enzyme immobilization. RSC Advances. 10(12):7170-7180. DOI:10.1039/C9RA10794K.

Sedlarik K.M., Schoots J. A., Oosterbaan, J. P. et al. (1992). Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment. Aktuelle Traumatol; 22(5): 219-28.

Yufei S., Hongjian Z., Xin Z. (2020). A comparative study of two porous sponge scaffolds prepared by collagen derived from porcine skin and fish scales as burn wound dressings in a rabbit model. Regenerative Biomaterials, Volume 7, Issue 1, pp. 63–70. DOI: 10.1093/rb/rbz036.

Zhao Y., Fan J., Bai S. (2019). Biocompatibility of injectable hydrogel from decellularized human adipose tissue in vitro and in vivo. J Biomed Mater Res; 107:1684–94.

Yi Y., Guang-Wei Y., Jian-Juan L. (2024). Fabrication of levofloxacin-loaded porcine acellular dermal matrix hydrogel and functional assessment in urinary tract infection. Journal of Nanobiotechnology volume 22, Article number:52, 1167.

Lee C, Shim S., Jang H. et al. (2017). Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy; 19:1048–59.

Hsu P. W., Salgado C. J., Kent K., et al. (2009). Evaluation of porcine dermal collagen (Permacol) used in abdominal wall reconstruction. J. Plast. Reconstr. Aesthetic Surg.; 62:1484–1489. DOI:10.1016/j.bjps.2008.04.060.

Veves A., Sheehan P., Pham H.T. (2002). A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs. standard treatment in the management of diabetic foot ulcers. Arch. Surg.; 137:822–827. DOI: 10.1001/archsurg.137.7.822.

Kuo S., Kim H. M., Wang Z., et al. (2018). Comparison of two decellularized dermal equivalents. J. Tissue Eng. Regen. Med.; 12:983–990. DOI:10.1002/term.2530.

Valentin J. E., Badylak J. S., McCabe G. P., et al. (2006) Extracellular matrix bioscaffolds for orthopaedic applications: A comparative histologic study. JBJS; 88:2673–2686. DOI:10.2106/JBJS.E.01008.

Tierney B.P. (2021). Comparison of 30-day Clinical Outcomes with SimpliDerm and AlloDerm RTU in Immediate Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open.;9:e3648. DOI:10.1097/GOX.0000000000003648.

Veves A., Sheehan P., Pham H. T. (2002). A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs. standard treatment in the management of diabetic foot ulcers. Arch. Surg.;137:822–82754.

Thönes S., Rother S., Wippold T., et al. (2019) Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomater.;86:135–47. DOI: 10.1016/j.actbio.2019.01.029.

Kondo S., Kuroyanagi Y. (2012). Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor. J Biomat Sci-Polym E.;23(5): 629–43. DOI:10.1163/092050611X555687.

Niiyama H., Kuroyanagi Y. (2014). Development of novel wound dressing composed of hyaluronic acid and collagen sponge containing epidermal growth factor and vitamin C derivative. J Artif Organs.;17(1):81–7. DOI: 10.1007/s10047-013-0737-x.

Cheng Y., Huang S., Yu F., et al. (2020) Hybrid freeze-dried dressings composed of epidermal growth factor and recombinant human-like collagen enhance cutaneous wound healing in rats. Front Bioeng Biotechnol.;8:8. DOI: 10.3389/fbioe.2020.00742.

Nyambat B., Chen C. H., Wong P. C. et al. (2018). Genipin-crosslinked adipose stem cell derived extracellular matrix-nano graphene oxide composite sponge for skin tissue engineering J. Mater. Chem. B, 6, pp. 979-990.

Rameshbabu A. P., Bankoti K., Datta S., et al. (2018). Silk sponges ornamented with a placenta-derived extracellular matrix augment full-thickness cutaneous wound healing by stimulating neovascularization and cellular migration ACS Appl. Mater. Interfaces, 10, pp.16977-16991.

Kim H. S., Hwang H. J., Kim H. J., et al. (2022). Effect of decellularized extracellular matrix bioscaffolds derived from fibroblasts on skin wound healing and remodeling Front. Bioeng. Biotechnol.,10, Article 865545.

Published

2024-08-30

How to Cite

Macagonova, O., Cociug, A., Taralunga, T., Nacu, V., & Braniste, T. (2024). DERMIS SURFACE MODIFICATION IN TISSUE ENGINEERING. Modern Engineering and Innovative Technologies, 2(34-02), 140–152. https://doi.org/10.30890/2567-5273.2024-34-00-040

Issue

Section

Articles