AI IN THE CONSTRUCTION OF EDUCATIONAL TOOLS AND QUIZZES FOR DIFFERENT PROGRAMMING LANGUAGES
DOI:
https://doi.org/10.30890/2567-5273.2024-35-00-042Keywords:
AI, large language model, quiz generation, personalized learning, programming languages, natural language processing, Python, Java, C , adaptive learning, educational toolsAbstract
With the development of AI, especially large language models (LLM), education has undergone significant changes. This article explores the role of AI-based tools in generating educational quizzes and learning materials for programming languages such asMetrics
References
Hasan, A. S. M. M. E., Shahnoor, M. A., Tasneem, K. B., & Sumaiya, S. (2024). Automatic question & answer generation using generative Large Language Model (LLM). BRAC University Institutional Repository. URL: https://dspace.bracu.ac.bd:8443/xmlui/handle/10361/22833
Sreekanth, D. (2023). AI-based quiz generation: The role of LLMs in digital education. Kennesaw State University Digital Commons.
URL:https://digitalcommons.kennesaw.edu/cday/2023fall/Undergraduate_Research/7/
Meißner, Niklas; Speth, Sandro; Kieslinger, Julian; Becker, Steffen (2024): EvalQuiz – LLM-based Automated Generation of Self-Assessment Quizzes in Software Engineering Education. Software Engineering im Unterricht der Hochschulen 2024. DOI: 10.18420/seuh2024_04. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-255-0. pp. 53-64. Linz, Österreich. 29. Februar - 1.März 2024.
URL: https://dl.gi.de/items/1561864d-a5b9-42d2-821d-41baf80eb630/
Lopez, C., Morrison, M., & Deacon, M. (2024). Language models for generating programming questions with varying difficulty levels. European Public & Social Innovation Review, 9, 1–19. https://doi.org/10.31637/epsir-2024-760
Bitew, S. K., Deleu, J., Develder, C., & Demeester, T. (2023). Distractor generation for multiple-choice questions with predictive prompting and large language models. arXiv. URL: https://arxiv.org/abs/2307.16338
Ersoy, B. I. (2024). ePub-to-Quiz Conversion with Large Language Models. URL: https://www.cl.uzh.ch/dam/jcr:5c3787db-bc0f-42a6-82ab-92fbc435585e/masterarbeit.final.pdf
Elkins, S., Kochmar, E., Cheung, J. C. K., & Serban, I. (2024). How Teachers Can Use Large Language Models and Bloom’s Taxonomy to Create Educational Quizzes. Proceedings of the AAAI Conference on Artificial Intelligence, 38(21), 23084-23091. https://doi.org/10.1609/aaai.v38i21.30353
Pagano, T. P., Loureiro, R. B., Lisboa, F. V. N., Peixoto, R. M., Guimarães, G. A. S., Cruz, G. O. R., Araujo, M. M., Santos, L. L., Cruz, M. A. S., Oliveira, E. L. S., Winkler, I., & Nascimento, E. G. S. (2023). Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. URL: https://www.mdpi.com/2504-2289/7/1/15
Frankford, E., Höhn, I., Sauerwein, C., & Breu, R. (2024). A Survey Study on the State of the Art of Programming Exercise Generation using Large Language Models. arXiv. URL: https://arxiv.org/abs/2405.20183
Góral, G., Wiśnios, E., Sankowski, P., & Budzianowski, P. (2024).When All Options Are Wrong: Evaluating Large Language Model Robustness with Incorrect Multiple-Choice Options. arXiv. URL: https://arxiv.org/abs/2409.00113
Diehl, P., Nader, N., Brandt, S., & Kaiser, H. (2024). Evaluating AI-generated code for C++, Fortran, Go, Java, Julia, Matlab, Python, R, and Rust. arXiv. URL:https://arxiv.org/abs/2405.13101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.