AI IN THE CONSTRUCTION OF EDUCATIONAL TOOLS AND QUIZZES FOR DIFFERENT PROGRAMMING LANGUAGES

Authors

DOI:

https://doi.org/10.30890/2567-5273.2024-35-00-042

Keywords:

AI, large language model, quiz generation, personalized learning, programming languages, natural language processing, Python, Java, C , adaptive learning, educational tools

Abstract

With the development of AI, especially large language models (LLM), education has undergone significant changes. This article explores the role of AI-based tools in generating educational quizzes and learning materials for programming languages ​​such as

Metrics

Metrics Loading ...

References

Hasan, A. S. M. M. E., Shahnoor, M. A., Tasneem, K. B., & Sumaiya, S. (2024). Automatic question & answer generation using generative Large Language Model (LLM). BRAC University Institutional Repository. URL: https://dspace.bracu.ac.bd:8443/xmlui/handle/10361/22833

Sreekanth, D. (2023). AI-based quiz generation: The role of LLMs in digital education. Kennesaw State University Digital Commons.

URL:https://digitalcommons.kennesaw.edu/cday/2023fall/Undergraduate_Research/7/

Meißner, Niklas; Speth, Sandro; Kieslinger, Julian; Becker, Steffen (2024): EvalQuiz – LLM-based Automated Generation of Self-Assessment Quizzes in Software Engineering Education. Software Engineering im Unterricht der Hochschulen 2024. DOI: 10.18420/seuh2024_04. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-255-0. pp. 53-64. Linz, Österreich. 29. Februar - 1.März 2024.

URL: https://dl.gi.de/items/1561864d-a5b9-42d2-821d-41baf80eb630/

Lopez, C., Morrison, M., & Deacon, M. (2024). Language models for generating programming questions with varying difficulty levels. European Public & Social Innovation Review, 9, 1–19. https://doi.org/10.31637/epsir-2024-760

Bitew, S. K., Deleu, J., Develder, C., & Demeester, T. (2023). Distractor generation for multiple-choice questions with predictive prompting and large language models. arXiv. URL: https://arxiv.org/abs/2307.16338

Ersoy, B. I. (2024). ePub-to-Quiz Conversion with Large Language Models. URL: https://www.cl.uzh.ch/dam/jcr:5c3787db-bc0f-42a6-82ab-92fbc435585e/masterarbeit.final.pdf

Elkins, S., Kochmar, E., Cheung, J. C. K., & Serban, I. (2024). How Teachers Can Use Large Language Models and Bloom’s Taxonomy to Create Educational Quizzes. Proceedings of the AAAI Conference on Artificial Intelligence, 38(21), 23084-23091. https://doi.org/10.1609/aaai.v38i21.30353

Pagano, T. P., Loureiro, R. B., Lisboa, F. V. N., Peixoto, R. M., Guimarães, G. A. S., Cruz, G. O. R., Araujo, M. M., Santos, L. L., Cruz, M. A. S., Oliveira, E. L. S., Winkler, I., & Nascimento, E. G. S. (2023). Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. URL: https://www.mdpi.com/2504-2289/7/1/15

Frankford, E., Höhn, I., Sauerwein, C., & Breu, R. (2024). A Survey Study on the State of the Art of Programming Exercise Generation using Large Language Models. arXiv. URL: https://arxiv.org/abs/2405.20183

Góral, G., Wiśnios, E., Sankowski, P., & Budzianowski, P. (2024).When All Options Are Wrong: Evaluating Large Language Model Robustness with Incorrect Multiple-Choice Options. arXiv. URL: https://arxiv.org/abs/2409.00113

Diehl, P., Nader, N., Brandt, S., & Kaiser, H. (2024). Evaluating AI-generated code for C++, Fortran, Go, Java, Julia, Matlab, Python, R, and Rust. arXiv. URL:https://arxiv.org/abs/2405.13101

Published

2024-10-30

How to Cite

Титенко, С., & Корж, М. (2024). AI IN THE CONSTRUCTION OF EDUCATIONAL TOOLS AND QUIZZES FOR DIFFERENT PROGRAMMING LANGUAGES. Modern Engineering and Innovative Technologies, 1(35-01), 80–84. https://doi.org/10.30890/2567-5273.2024-35-00-042

Issue

Section

Articles