MYOCARDIAL DAMAGE DUE TO HYPERLIPIDEMIA: PATHOPHYSIOLOGICAL MECHANISMS AND PHARMACOLOGICAL CARDIOPROTECTION. THE REVIEW
DOI:
https://doi.org/10.30890/2567-5273.2025-38-02-007Keywords:
hyperlipidemia, myocardial damage, inflammation, oxidative stress, mitochondrial dysfunction, lipid lowering therapy, cardioprotection.Abstract
The review elucidates contemporary views about an influence of hyperlipidemia (HL) on myocardial function and the mechanisms of myocardial damage due to HL, about a relationship between heart failure (HF) and serum lipids, and also about cardioprotectiveReferences
Adler BL, Christopher-Stine L. Triggers of inflammatory myopathy: insights into pathogenesis. Discov Med. 2018; 25(136): 75-83. DOI: PMID: 29579414; PMCID:PMC 5921929.
Alonso-Pineiro JA, Gonzalez-Rovira A, Sanchez-Gomar I, et al. Nrf2 and heme oxygenase-1 involvement in atherosclerosis related oxidative stress. Antioxidants (Basel). 2021; 10(9): 1463. DOI: 103390/antiox10091463.
AlSaad AMS, Alasmari F, Abuohashish HM, et al. Renin-angiotensin system blockade by losartan neutralize hypercholesterolemia-induced inflammatory and oxidative injuries. Redox Rep. 2020; 25(1): 51-58. DOI: 10.1080/13510002.2020.1763714.
Arenas-Jal M, Sune-Negre JM, Garcia-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020; 19(2): 574-594. DOI: 10.1111/1541-4337.12539.
Bukhari IA, Almotrefi AA, Mohamed OY, et al. Protective effect of fenofibrate against ischemia - / reperfusion – induced cardiac arrhythmias in isolated rat hearts. Fundam Clin Pharmacol. 2018; 32(2): 141-6. DOI: 10.1111/fcp.12342.
Cassano V, Leo A, Tallarico M, et al. Metabolic and cognitive effects of ranolazine in type 2 diabetes mellitus: Data from an in vivo model. Nutrients. 2020; 12(2): 382. DOI: 10.3390/nu12020382.
Castoldi A, Monteiro LB, van Teijlingen Bakker N, et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun. 2020; 11(1): 4107. DOI: 10.1038/s41467-020-17881-3.
Charach G, Argov O, Nochomovitz H, et al. A longitudinal 20 years of follow up showed a decrease in the survival of heart failure patients who maintained low LDL cholesterol levels. QJM. 2018; 111(5): 319-325. DOI: 10.1093/qjmed/hcy043.
Chong C-R, Sallustio B, Horowitz JD. Drugs that affect cardiac metabolism: focus on perhexiline. Cardiovasc Drugs Ther. 2016; 30(4): 399-405. DOI: 10.1007/s10557-016-6664-3.
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021; 114: 154338. DOI: 10.1016/j.metabol.2020.154338.
Crisafulli A, Pagliaro P, Roberto S, et al. Diabetic cardiomyopathy and ischemic heart disease. Prevention and therapy by exercise and conditioning. Int J Mol Sci. 2020; 21(8): 2896. DOI: 10.3390/ijms21082896.
Diane A, Borthwick F, Wu S, et al. Hypolipidemic and cardioprotective benefits of a novel fireberry hawthorn fruit extract in the JCR:LA-cp rodent model of dyslipidemia and cardiac dysfunction. Food Funct. 2016; 7(9): 3943-52. DOI: 10.1039/c6fo01023g.
Grupta R, Ranchal P, Mahajan S, et al. Lipid inclusions in cardiac myocytes – a rare case of cardiolipotoxicity. Future Cardiol. 2021; 17(2): 293-99. DOI: 10.2217/fca-2020-0076.
Heida A, Gruben N, Catrysse L, et al. The hepatocyte IKK: NF-kB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol Metab. 2021; 54: 101349. DOI: 10.1016/j.molmet.2021.101349.
Henderson GC. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease. Nutrients. 2021; 13(8): 2590. DOI: 10.3390/nu13082590.
Hu Q, Zhang H, Gutierrez-Cortes N, et al. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res. 2020; 126(4): 456-70. DOI: 10.1161/CIRCRESAHA.119.315252.
Joseph LC, Subramanyam P, Radlicz C, et al. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm. 2016; 13(8): 1699-706. DOI: 10.1016/j.hrthm.2016.05.002.
Kaplan A, Amin G, Abidi E, et al. Role of ranolazine in heart failure: from cellular to clinic perspective. Eur J Pharmacol. 2022; 919: 174787. DOI: 10.1016/j.ejphar.2022.174787.
Karr S. Epidemiology and management of hyperlipidemia. Am J Manag Care. 2017; 23(9 Suppl.): S139-48. DOI: PMID: 28978219.
Khan Z, Suleman M, Maqsood A, et al. Unveiling cardiovascular connections between familial hypercholesterolemia (FH) and left ventricular hypertrophy (LVH). Bio Scientific Review. 2024; 6(1): 55-69. DOI: 10.32350/bsr.61.iii.
Li K, Deng Y, Deng G, et al. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Res Ther. 2020; 11(1): 131. DOI: 10.1186/s13287-020-01643-5
Liu Y, Xu W, Xiong Y, et al. Evaluations of the effect of Huang Qi against heart failure based on comprehensive echocardiography index and metabolomics. Phytomedicine. 2018; 50: 205-12. DOI: 10.1016/j.phymed.2018.04.027.
Lundsgaard A-M, Fritzen AM, Nicolaisen TS, et al. Glucometabolic consequences of acute and prolonged inhibition of fatty oxidation. J Lipid Res. 2020; 61(1): 10-19. DOI: 10.1194/jlr.RA119000177.
Mansur AJ. Cardiac effects of trimetazidine in diabetic rats. Arq Bras Cardiol. 2019; 112(2): 179. DOI: 10.5935/abc.20190012.
Marzilli M, Vinereanu D, Lopaschuk G, et al. Trimetazidine in cardiovascular medicine. Int J Cardiol. 2019; 293:39-44. DOI: 10.1016/j.ijcard.2019.05.063.
Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 2019: 166:502-13. DOI: 10.1016/j.eimech.2019.01.067.
Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation. 2021; 143(21): e984-e1010. DOI: 10.1161/CIR.0000000000000973.
Rascovic A, Cucuz V, Torovic L, et al. Resveratrol supplementation improves metabolic control in rats with induced hyperlipidemia and type 2 diabetes. Saudi Pharm J. 2019; 27(7): 1036-43. DOI: 10.1016/j.jsps.2019.08.006.
Ruscica M, Sirtori CR, Carugo S, et al. Omega-3 and cardiovascular prevention – is this still a choice? Pharmacol Res. 2022; 182: 106342. DOI: 10.1016/j.phrs.2022.106342.
Saracoglu E, Kilis S, Vuruskan E, et al. Prediction of subtle left ventricular systolic dysfunction in homozygous and heterozygous familial hypercholesterolemia: genetic analyses and speckle tracking echocardiography study. Echocardiography. 2018; 35(9): 1289-99. DOI: 10.1111/echo.14021.
Tang HY, Wang CH, Ho HY, et al. Lipidomics reveals accumulation of the oxidized cholesterol in erythrocytes of heart failure patients. Redox Biol. 2018; 14: 499-508. DOI: 10.1016/j.redox.2017.10.020.
Tao H, Yancey PG, Blakemore JL, et al. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of Tfeb in atherosclerosis. J Clin Ivest. 2021; 131(7): e94229. DOI: 10.1172/JCI94229.
Wu C-Y, Satapati S, Gui W, et al. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. J Biol Chem. 2018; 293(25): 9604-13. DOI: 10.1074/jbc.RA118.002838.
Xie Y, Li J, Kang R, Tang D. Interplay between lipid metabolism and autophagy. Front Cell Dev Biol. 2020; 8: 431. DOI: 10.3389/fcell.2020.00431.
Xu SC, Ma ZG, Wei WY, et al. Bezafibrate attenuates pressure overload-induced cardiac hypertrophy and fibrosis. PPAR Res. 2017; 2017: 5789714. DOI: 10.1155/2017/5789714.
Yang S, Lian G. ROS and diseases: Role in metabolism and energy supply. Mol Cell Biochem. 2020; 98(2): 263-77. DOI: 10.1007/s11010-019-03667-9.
Yao YS, Di LT, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium. An updated review. Lipids Health Dis. 2020; 19(1): 23. DOI: 10.1186/s12944-019-1171-8.
Yu L, Zhou C, Luo Z, et al.The lipid lowering effects of Danhong and Huangqi injections: a meta-analysis of clinical controlled trials. Lipids Health Dis. 2018; 17(1): 106. DOI: 10.1186/s12944-018-0760-2.
Yuan GQ, Gao S, Geng YJ, et al. Tongxinluo improves Apolipoprotein E – deficient mouse heart function. Clin Med J. 2018; 131(5): 544-52. DOI: 10.4103/0366-6999.226063.
Zhang Z, Wu H, Wang T, et al. Mechanisms of myocardial damage due to hyperlipidemia: a review of recent studies. Med Sci Monit. 2022; 28: e937051. DOI: 10.12659/MSM.937051.
Zhong P, Duan D, Huang Y, Huang H. CaMKII activation promotes cardiac electrical remodeling and increases the susceptibility to arrhythmia induction in high-fat diet-fed mice with hyperlipidemia conditions. J Cardiovasc Pharmacol. 2017; 70(4): 245-54. DOI: 10.1097/FJC.0000000000000512.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.