CONVERSION OF RGB IMAGES TO IR: PROBLEMS AND PROSPECTS

Authors

DOI:

https://doi.org/10.30890/2567-5273.2025-39-02-048

Keywords:

image translation, infrared image, GAN, CycleGAN, deep learning, SSIM, FID, pseudo-infrared.

Abstract

The paper addresses the task of transforming visible (RGB) images into infrared (IR) images using computer vision techniques. The relevance of this problem is substantiated: IR cameras are costly and have limitations, so the ability to generate pseudo-IR

References

Li Y., Ko Y., Lee W. A Feasibility Study on Translation of RGB Images to Thermal Images: Development of a Machine Learning Algorithm // SN Computer Science. – 2023. – Vol. 4. – Article 555. DOI: 10.1007/s42979-023-02040-4.

Liik H. Thermal image generation from RGB // Medium: електронне науково-популярне видання. – 2023. – Режим доступу: https://medium.com/@hannesliik/thermal-image-generation-from-rgb-b152efa66cc2 – Дата звернення: 18.06.2025.

Isola P., Zhu J., Zhou T., Efros A.A. Image-to-Image Translation with Conditional Adversarial Networks // Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). – 2017. – С. 5967–5976. DOI: 10.1109/CVPR.2017.632.

Zhu J.Y., Park T., Isola P., Efros A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks // Proc. IEEE Int. Conf. on Computer Vision (ICCV). – 2017. – С. 2242–2251. DOI: 10.1109/ICCV.2017.244.

Wadsworth E., Mahajan A., Prasad R., Menon R. Deep learning for thermal-RGB image-to-image translation // Infrared Physics & Technology. – 2024. – Vol. 141. – С. 105442. DOI: 10.1016/j.infrared.2023.105442.

Chen Y., Chen P., Zhou X., та ін. Implicit Multi-Spectral Transformer: A Lightweight and Effective Visible to Infrared Image Translation Model // arXiv preprint arXiv:2404.07072. – 2024. – 12 с. – Режим доступу: https://arxiv.org/abs/2404.07072 – Дата звернення: 18.06.2025.

Lu Y., Lu G. Bridging the Invisible and Visible World: Translation between RGB and IR Images through Contour Cycle GAN // Proc. 17th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS). – 2021. – С. 1–8. DOI: 10.1109/AVSS52988.2021.9663750.

Aslahishahri M., Stanley K., Duddu H., та ін. From RGB to NIR: Predicting Near Infrared Reflectance from Visible Spectrum Aerial Images of Crops // Proc. ICCV Workshops (CVPPA). – 2021. – С. 1312–1321.

Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Lecture Notes in Computer Science (LNCS). – 2015. – Т. 9351. – С. 234–241. DOI: 10.1007/978-3-319-24574-4_28.

He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition // Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). – 2016. – С. 770–778. DOI: 10.1109/CVPR.2016.90.

Wadsworth J., Menon R., і співавт. Machine-learning research translates color camera images into infrared // Price Utah: офіційне новинне видання Університету Юти. – 5 вер. 2024. – Режим доступу: https://www.price.utah.edu/2024/09/05/u-machine-learning-research-translates-color-camera-images-into-infrared – Дата звернення: 18.06.2025.

References.

Aslahishahri, M., Stanley, K., Duddu, H. et al. (2021) ‘From RGB to NIR: Predicting near infrared reflectance from visible spectrum aerial images of crops’, Proceedings of the ICCV Workshops (CVPPA), pp. 1312–1321.

Chen, Y., Chen, P., Zhou, X. et al. (2024) ‘Implicit multi-spectral transformer: A lightweight and effective visible to infrared image translation model’, arXiv preprint, arXiv:2404.07072. Available at: https://arxiv.org/abs/2404.07072 (Accessed: 18 June 2025).

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep residual learning for image recognition’, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. doi:10.1109/CVPR.2016.90.

Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A. (2017) ‘Image-to-image translation with conditional adversarial networks’, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. doi:10.1109/CVPR.2017.632.

Li, Y., Ko, Y. and Lee, W. (2023) ‘A feasibility study on translation of RGB images to thermal images: development of a machine learning algorithm’, SN Computer Science, 4, Article 555. doi:10.1007/s42979-023-02040-4.

Liik, H. (2023) Thermal image generation from RGB. Medium. Available at: https://medium.com/@hannesliik/thermal-image-generation-from-rgb-b152efa66cc2 (Accessed: 18 June 2025).

Lu, Y. and Lu, G. (2021) ‘Bridging the invisible and visible world: translation between RGB and IR images through contour CycleGAN’, Proceedings of the 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8. doi:10.1109/AVSS52988.2021.9663750.

Ronneberger, O., Fischer, P. and Brox, T. (2015) ‘U-Net: Convolutional networks for biomedical image segmentation’, Lecture Notes in Computer Science, 9351, pp. 234–241. doi:10.1007/978-3-319-24574-4_28.

Wadsworth, E., Mahajan, A., Prasad, R. and Menon, R. (2024) ‘Deep learning for thermal-RGB image-to-image translation’, Infrared Physics & Technology, 141, 105442. doi:10.1016/j.infrared.2023.105442.

Wadsworth, J., Menon, R. et al. (2024) ‘Machine-learning research translates color camera images into infrared’, Price Utah. Available at: https://www.price.utah.edu/2024/09/05/u-machine-learning-research-translates-color-camera-images-into-infrared (Accessed: 18 June 2025).

Zhu, J.Y., Park, T., Isola, P. and Efros, A.A. (2017) ‘Unpaired image-to-image translation using cycle-consistent adversarial networks’, Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. doi:10.1109/ICCV.2017.244.

Published

2025-06-30

How to Cite

Юшко, О. (2025). CONVERSION OF RGB IMAGES TO IR: PROBLEMS AND PROSPECTS. Modern Engineering and Innovative Technologies, 2(39-02), 120–135. https://doi.org/10.30890/2567-5273.2025-39-02-048

Issue

Section

Articles