THE TECHNOLOGY OF THE SECOND GENERATION OF BIOETHANOL
DOI:
https://doi.org/10.30890/2567-5273.2018-03-01-018Keywords:
: bioethanol, biomass, microorganisms, fermentation, synthesis gas (syngas), acids, acetate-producing process.Abstract
. In this article we describe the practilal realazing of the second and final part of the technology of biomass gasification in the bioethanol (fuel ethanol) production. This part is the conversion of syngas to ethanol using the microorganisms. Th
Metrics
References
P.C. Munasinghe and S.K. Khanal, Chapter 4 - Biomass-derived syn-gas fermentation into biofuels, in Biofuels, P. Ashok, et al., Eds., 2011, Academic Press: Amsterdam. p. 79–98.
P.C. Munasinghe and S.K. Khanal, Biomass-derived syngas fermenta-tion into biofuels: Opportunities and challenges. Bioresource Technology, 2010. 101(13): p. 5013–5022.
M. Mohammadi, G.D. Najafpour, H. Younesi, P. Lahijani, M.H. Uzir, and A.R. Mohamed, Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4255–4273.
M.R. Wilkins and H.K. Atiyeh, Microbial production of ethanol from carbon monoxide. Current Opinion in Biotechnology, 2011. 22(3): p. 326–330.
D.K. Kundiyana, R.L. Huhnke, and M.R. Wilkins, Syngas fermenta-tion in a 100-L pilot scale fermentor: Design and process consider-ations. Journal of Bioscience and Bioengineering, 2010. 109(5): p. 492–498.
A.M. Henstra, J. Sipma, A. Rinzema, and A.J. Stams, Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 2007. 18(3): p. 200–206.
K.T. Klasson, C.M.D. Ackerson, E.C. Clausen, and J.L. Gaddy, Biological conversion of synthesis gas into fuels. International Journal of Hydrogen Energy, 1992. 17(4): p. 281–288.
H.L. Drake, S.L. Daniel, K. Küsel, C. Matthies, C. Kuhner, and S. Braus-Stromeyer, Acetogenic bacteria: What are the in situ consequences of their diverse metabolic versatilities. BioFactors, 1997. 6(1): p. 13–24.
S.W. Ragsdale, Metals and their scaffolds to promote difficult enzy-matic reactions. Chemical Reviews, 2006. 106(8): p. 3317–3337.
M. Köpke, C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, A. Ehrenreich, W. Liebl, G. Gottschalk, and P. Dürre, Clostridium ljung-dahlii represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(29): p. 13087–13092.
M. Köpke, C. Mihalcea, J.C. Bromley, and S.D. Simpson, Fermentative production of ethanol from carbon monoxide. Current Opinion in Biotechnology, 2011. 22(3): p. 320–325.
L.G. Ljungdahl, The autotrophic pathway of acetate synthesis in ace-togenic bacteria. Annual Review of Microbiology, 1986. 40: p. 415–450.
H.N. Abubackar, M.C. Veiga, and C. Kennes, Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol. Biofuels, Bioproducts and Biorefining, 2011. 5(1): p. 93–114.
K.T. Klasson, M.D. Ackerson, E.C. Clausen, and J.L. Gaddy, Biological conversion of coal and coal-derived synthesis gas. Fuel, 1993. 72(12): p. 1673–1678.
J.R. Phillips, E.C. Clausen, and J.L. Gaddy, Synthesis gas as sub-strate for the biological production of fuels and chemicals. Applied Biochemistry and Biotechnology, 1994. 45–46(1): p. 145–157.
A. Ahmed, B.G. Cateni, R.L. Huhnke, and R.S. Lewis, Effects of bio-mass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7 T. Biomass and Bioenergy, 2006. 30(7): p. 665–672.
B.K. Babu, H.K. Atiyeh, M.R. Wilkins, and R.L. Huhnke, Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by clostridium strain P11 using simulated biomass-based syngas. Biological Engineering, 2010. 3(2): p. 19–35.
J. Saxena and R.S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium rags-dalei. Journal of Industrial Microbiology and Biotechnology, 2011. 38(4):p.513–521.
A. Panneerselvam, M.R. Wilkins, M.J.M. DeLorme, H.K. Atiyeh, and R.L. Huhnke, Effects of various reducing agents on syngas fermen-tation by clostridium ragsdalei. Biological Engineering, 2010. 2(3): p.135–144.
P. Maddipati, H.K. Atiyeh, D.D. Bellmer, and R.L. Huhnke, Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technology, 2011. 102(11): p. 6494–6501.
D.K. Kundiyana, R.L. Huhnke, P. Maddipati, H.K. Atiyeh, and M.R. Wilkins, Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresource Technology, 2010. 101(24): p. 9673–9680.
J. Abrini, H. Naveau, and E.J. Nyns, Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology, 1994. 161(4): p. 345–351.
M. Misoph and H.L. Drake, Effect of CO2 on the fermentation capaci-ties of the acetogen Peptostreptococcus productus U-1. Journal of Bacteriology, 1996. 178(11): p. 3140–3145.
H.G. Wood, S.W. Ragsdale, and E. Pezacka, The acetyl-CoA path-way of autotrophic growth. FEMS Microbiology Letters, 1986. 39(4): p. 345–362.
D.K. Kundiyana, M.R. Wilkins, P. Maddipati, and R.L. Huhnke, Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresource Technology, 2011. 102(10): p. 5794–5799.
H. Younesi, G. Najafpour, and A.R. Mohamed, Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal, 2005. 27(2): p. 110–119.
J.R. Phillips, K.T. Klasson, E.C. Clausen, and J.L. Gaddy, Biological production of ethanol from coal synthesis gas - Medium develop-ment studies. Applied Biochemistry and Biotechnology, 1993. 39–40(1): p. 559–571.
J.L. Gaddy, Biological production of ethanol from waste gases with Clostridium ljungdahlii. US Patent No., 2000. 6,136,577.
J.L. Gaddy, Clausen, E. C., Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism. US Patent No., 1992. 5,173,429.
J.L. Cotter, M.S. Chinn, and A.M. Grunden, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme and Microbial Technology, 2009. 44(5): p. 281–288.
J.L. Vega, G.M. Antorrena, E.C. Clausen, and J.L. Gaddy, Study of gas-eous substrate fermentations: Carbon monoxide conversion to acetate. 2. Continuous culture. Biotechnology and Bioengineering, 1989. 34(6): p. 785–793.
D.K. Kundiyana, R.L. Huhnke, and M.R. Wilkins, Effect of nutrient limitation and two-stage continuous fermentor design on productivi-ties during “Clostridium ragsdalei” syngas fermentation. Bioresource Technology, 2011. 102(10): p. 6058–6064.
Y. Guo, J. Xu, Y. Zhang, H. Xu, Z. Yuan, and D. Li, Medium optimiza-tion for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresource Technology, 2010. 101(22): p. 8784–8789.
Y. Nie, H. Liu, G. Du, and J. Chen, Acetate yield increased by gas circu-lation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system. Bioresource Technology, 2008. 99(8): p. 2989–2995.
D. Xu and R.S. Lewis, Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass and Bioenergy, 2012. 45(0): p. 303–310.
D. Xu, D.R. Tree, and R.S. Lewis, The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass and Bioenergy, 2011. 35(7): p. 2690–2696.
Y. Richardson, J. Blin, and A. Julbe, A short overview on purifica-tion and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts. Progress in Energy and Combustion Science, 2012. 38(6): p. 765–781.