THE OVERVIEW OF NEURAL RENDERING
DOI:
https://doi.org/10.30890/2567-5273.2023-27-01-060Keywords:
neural rendering, neural network, BRDF, surface shading, rendering,Abstract
In the article the usage of neural networks for increasing image rendering efficiency was analyzed. The main characteristics of the most popular neural networks architectures are described. The common application areas of neural rendering are analyzed. TMetrics
References
Chollet, F. (2018) Deep learning with Python. Manning Publications Co.
Tewari, A. et al. (2020) ‘State of the art on neural rendering’, Computer Graphics Forum, 39(2), pp. 701–727. doi:10.1111/cgf.14022.
Romanyuk, O. N. (1999) Computer Graphics. VSTU.
Sharp, N. and Ovsjanikov, M. (2020) ‘PointTriNet: Learned triangulation of 3D point sets’, Computer Vision – ECCV 2020, pp. 762–778. doi:10.1007/978-3-030-58592-1_45.
Romanyuk, O. et al. (2022) ‘Features of the computational process organization of initial parameters determination for shading’, in 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). Ruzomberok, Slovakia, pp. 22–26. doi:10.1109/acit54803.2022.9913193.
Romanyuk, O. et al. (2022) ‘The concept and means of adaptive shading’, in 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). Ruzomberok, Slovakia, pp. 33–38. doi:10.1109/acit54803.2022.9913105.
Nguyen-Phuoc et al. (2018) ‘RenderNet: a deep convolutional network for differentiable rendering from 3D shapes’, in NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal, Canada, pp. 7902–7912. doi: 10.48550/arXiv.1806.06575.
Gatys, L. A., Ecker, A. S., and Bethge, M. (2015) ‘Texture Synthesis Using Convolutional Neural Networks’, in Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, pp. 262–270. doi: 10.48550/arXiv.1505.07376.
Risser, E., Wilmot, P. and Barnes, C. (2017) ‘Stable and controllable neural texture synthesis and style transfer using histogram losses’, arXiv.org. Available at: https://arxiv.org/abs/1701.08893 (Accessed: 18 June 2023).
Zavalniuk, Y. K. et al. (2022) ‘The development of the modified Schlick model for the specular color component calculation’, Information technology and computer engineering, 55(3), pp. 4–12. doi:10.31649/1999-9941-2022-55-3-4-12.
Zavalnyuk, E. K. et al. (2023) ‘Development of a physically correct model of reflection of the second degree’, Optoelectronic Information-Power Technologies, 44(2), pp. 19–25. doi:10.31649/1681-7893-2022-44-2-19-25.
Sztrajman, A. et al. (2021) ‘Neural BRDF representation and importance sampling’, Computer Graphics Forum, 40(6), pp. 332–346. doi:10.1111/cgf.14335.
Kim, S. et al. (2021) ‘Integration of neural network-based symbolic regression in deep learning for scientific discovery’, IEEE Transactions on Neural Networks and Learning Systems, 32(9), pp. 4166–4177. doi:10.1109/tnnls.2020.3017010.
Paz, H. et al. (2022) ‘Multiresolution Neural Networks for imaging’, 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) [Preprint]. doi:10.1109/sibgrapi55357.2022.9991765.
Mildenhall, B. et al. (2021) ‘Nerf’, Communications of the ACM, 65(1), pp. 99–106. doi:10.1145/3503250.
Lwin, K.T. et al. (2008) ‘Evaluation of image quality using Neural Networks’, Semantic Scholar. Available at: https://www.semanticscholar.org/paper/Evaluation-of-Image-Quality-using-Neural-Networks-Lwin-Myint/6c4aa33b2cd59162efb263f8d9ff6b88409d6c88(Accessed:18 June 2023).
Liu, S. et al. (2019) ‘Soft Rasterizer: Differentiable rendering for unsupervised single-view mesh reconstruction’, arXiv.org. Available at: https://arxiv.org/abs/1901.05567 (Accessed: 18 June 2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.