OBJECTS’ DETECTION IN THE CONTROLLED AREA BASED ON SIGNAL ANALYSIS USING PASSIVE LISTENING WI-FI NETWORK TRAFFIC

Authors

DOI:

https://doi.org/10.30890/2567-5273.2024-34-00-064

Keywords:

Information security, controlled area, Wi-Fi network, network traffic listening, channel state information (CSI), RSSI of signal, objects’ detection, ESP32 module.

Abstract

Service functions of modern operating systems allow passive monitoring ("listening") of computer network traffic without the use of additional tools and additional equipment. Such functions can be used to control information security by detecting the app

Metrics

Metrics Loading ...

References

Linux iftop – Listen Network Traffic and Bandwidth. URL: https://www.geeksforgeeks.org/linux-iftop-listen-network-traffic-and-bandwidth/ (Last accessed: 21.08.2024).

Zhu Yi., Zhu Ya., Zhang Z., Zhao B. Y., Zheng H. 60GHz mobile imaging radar. Mobile Computing Systems and Applications (HotMobile'15) : Proc. of the 16th Internat. Workshop, Santa Fe, New Mexico, USA. New York, NY, USA, 2015. P. 75–80. DOI: 10.1145/2699343.2699363.

Abazorius A. New system allows for high-accuracy, through-wall, 3-D motion tracking. Massachusetts Institute of Technology News : web site. Publ. Dec. 11, 2013. URL: https://news.mit.edu/2013/new-system-allows-for-high-accuracy-through-wall-3-d-motion-tracking-1211 (Last accessed: 23.08.2024).

Ma Y., Zhou G., Wang S. WiFi sensing with channel state information. ACM Computing Surveys. 2019. Vol. 52, no. 3. P. 1–36. DOI: 10.1145/3310194.

Al-ganess M. A. A., Elaziz M. A., Kim S., Ewees A. A., Abbasi A. A., Alhaj Yo. A., Hawbani A. Channel state information from pure communication to sense and track human motion: A survey. Sensors. 2019. Vol. 19, Is. 15, no. 3329. 27 p. DOI: 10.3390/S19153329.

ESP-IDF Programming Guide v5.0.2 documentation. Technical Documents | Espressif Systems. URL: https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/get-started/index.html (Last accessed: 01.08.2024).

Ding J., Wang Y. WiFi CSI-based human activity recognition using Deep Recurrent Neural Network. IEEE Access. 2019. Vol. 7. P. 174257–174269. DOI: 10.1109/ACCESS.2019.2956952.

Published

2024-08-30

How to Cite

Журавська, І., Тогоєв, О., & Фрич, Д. (2024). OBJECTS’ DETECTION IN THE CONTROLLED AREA BASED ON SIGNAL ANALYSIS USING PASSIVE LISTENING WI-FI NETWORK TRAFFIC. Modern Engineering and Innovative Technologies, 1(34-01), 31–37. https://doi.org/10.30890/2567-5273.2024-34-00-064

Issue

Section

Articles