METHODS FOR DETERMINING VISUAL SIMILARITY OF IMAGES
DOI:
https://doi.org/10.30890/2567-5273.2025-41-02-051Keywords:
image processing, neural network, computer vision, image featuresAbstract
This article examines existing approaches and methods for determining the level of visual similarity between images. Different types of visual image similarity are defined. The characteristics of each approach are analyzed, their advantages and disadvantaReferences
C. Zauner, «Implementation and Benchmarking of Perceptual Image Hash Functions,» Hagenberg, 2010.
D. G. Lowe, «Object Recognition from Local Scale-Invariant Features,» в Proc. of the International Conference on Computer Vision, Corfu, 1999.
E. Rublee, V. Rabaud, K. Konolige та G. Bradski, «ORB: an efficient alternative to SIFT or SURF,» 2011.
M. Calonder, V. Lepetit, C. Strecha and P. Fua, “BRIEF: Binary Robust Independent Elementary Features,” CVLab, EPFL, Lausanne, Switzerland, 2010.
lyly99, «Kaggle,» 22 Вересень 2020. [Онлайновий]. Available: https://www.kaggle.com/datasets/lyly99/logodet3k. [Дата звернення: 11 09 2025].
K. Schall, K. U. Barthel, N. Hezel та K. Jung, «GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval,» в MultiMedia Modeling: 28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6–10, 2022, Proceedings, Part I, Phu Quoc, Vietnam, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.



