METHODS FOR DETERMINING VISUAL SIMILARITY OF IMAGES

Authors

  • Kostiantyn Porublov Bohdan Khmelnytsky National University of Cherkasy
  • Ihor Bushyn Bohdan Khmelnytsky National University of Cherkasy https://orcid.org/0009-0003-1385-6924

DOI:

https://doi.org/10.30890/2567-5273.2025-41-02-051

Keywords:

image processing, neural network, computer vision, image features

Abstract

This article examines existing approaches and methods for determining the level of visual similarity between images. Different types of visual image similarity are defined. The characteristics of each approach are analyzed, their advantages and disadvanta

References

C. Zauner, «Implementation and Benchmarking of Perceptual Image Hash Functions,» Hagenberg, 2010.

D. G. Lowe, «Object Recognition from Local Scale-Invariant Features,» в Proc. of the International Conference on Computer Vision, Corfu, 1999.

E. Rublee, V. Rabaud, K. Konolige та G. Bradski, «ORB: an efficient alternative to SIFT or SURF,» 2011.

M. Calonder, V. Lepetit, C. Strecha and P. Fua, “BRIEF: Binary Robust Independent Elementary Features,” CVLab, EPFL, Lausanne, Switzerland, 2010.

lyly99, «Kaggle,» 22 Вересень 2020. [Онлайновий]. Available: https://www.kaggle.com/datasets/lyly99/logodet3k. [Дата звернення: 11 09 2025].

K. Schall, K. U. Barthel, N. Hezel та K. Jung, «GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval,» в MultiMedia Modeling: 28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6–10, 2022, Proceedings, Part I, Phu Quoc, Vietnam, 2022.

Published

2025-10-30

How to Cite

Порубльов, К., & Бушин, І. (2025). METHODS FOR DETERMINING VISUAL SIMILARITY OF IMAGES. Modern Engineering and Innovative Technologies, 2(41-02), 3–9. https://doi.org/10.30890/2567-5273.2025-41-02-051

Issue

Section

Articles